Suchergebnisse
IEA DHC Annex XIII Project 07: CASCADE - A comprehensive toolbox for integrating low-temperature sub-networks in existing district heating networks
The majority of urban district heating networks operate at high temperatures, which are a barrier to the efficient integration of heat sources such as solar, geothermal, ambient or low temperature waste heat. CASCADE is investigating the integration of low-temperature networks into the return pipe of existing district heating networks, which will reduce return temperatures and thus improve efficiency and increase its capacity to connect new customers.
IEA DHC Annex XIV project 02 „FAST DHC - Feasibility Assessment Tool for District Heating and Cooling“
The transformation of district heating is referred to as the transition from the 1st to the 4th generation (4GDH). Recently, so-called ‘thermal source networks (TSN)’, also known as 5th generation or anergy networks, have been introduced. The aim of the project FAST DHC is to develop and demonstrate a simple tool for the techno-economic evaluation of 4GDH and thermal source networks, which also enables a comparison with individual heating and cooling solutions.
IEA DHC Annex TS4: Digitalisation of District Heating and Cooling
The aim of the IEA DHC Annex TS4 is to identify the possibilities of digitalization and the integration of digital process for district heating and cooling. To this end, the Annex TS4 establishes a platform for industrial and scientific experts to strengthen international cooperation and networking and the exchange of experience of national research and development activities.
IEA-DHC Annex TS2: Implementation of Low Temperature District Heating Systems
The potential of alternative heat sources is highest at low system temperatures, but current district heating networks are usually high-temperature systems. The aim of the IEA DHC Annex TS2 is to support the transformation of district heating networks towards lower temperatures (the so-called 4th generation). For this purpose, Annex TS2 forms an international platform that enables an exchange on the topics of technology, system, demonstration and competitiveness.
IEA District Heating and Cooling (DHC TCP)
The TCP on District Heating and Cooling (DHC) was founded in 1983. It deals with the design, performance and operation of DHC and Combined Heat and Power systems as powerful tools for energy conservation and the reduction of environmental impacts of supplying heat.
IEA DHC Annex XIV project 04: RE-PEAK - How to cover peak heat loads in DH networks with renewables?
One challenge for the decarbonisation of many district heating networks (DH) is the provision of peak load. The objectives of the RE-PEAK project are: to gain a better understanding of the specific problems, to collect empirical data on the provision of peak load, to analyse the perception of district heating network operators with regard to the transition to climate-neutral peak load coverage, and to consolidate the results and derive recommendations.
IEA DHC Annex TS9: Digitalisation of District Heating and Cooling – Improving Efficiency and Performance Through Data Integration (Working period 2024 - 2028)
To successfully digitalize district heating and cooling (DHC), it is important to understand the benefits of incorporating digital processes into DHC networks. The purpose of this project is to investigate solutions for data transfer and processing between the components of DHC networks, with a focus on interoperability and standardization. Furthermore, non-technical hurdles and enablers to digitization processes in the DHC sector are assessed.
IEA DHC Annex TS8: Experimental investigations of DHC systems
The project aims at promoting and improving the use of experimental studies for the transformation, decarbonization and flexibilization of new and existing district heating and cooling (DHC) systems. A strong focus will be on the integration of digital technologies, both in terms of application (e.g., IoT and cloud solutions, digital twins, machine learning) and experimental implementation (e.g., hardware-in-the-loop, data spaces).
IEA DHC Annex TS3: Hybrid Energy Networks, District Heating and Cooling Networks in an Integrated Energy System Context Guidebook
Hybrid energy networks, i.e. the integration of electricity, heat and gas networks, can make a decisive contribution to optimizing the energy system. The IEA DHC Annex TS3 analyses the potentials and challenges of hybrid energy networks from the perspective of the district heating / cooling system. This is including the analyses of relevant technologies and synergies, an assessment of the different methodological approaches and tools, the analyses of case studies as well as the development of suitable business models and regulations.
IEA DHC Annex XIV project 06: HY2HEAT Using electrolysis waste heat in district heating networks
Hydrogen will primarily be produced by electrolysis, however, approximately one third of the electricity used to generate the hydrogen will be wasted as heat. The aim of HY2HEAT is to analyse the techno-economic synergies of electrolysis waste heat integration in District Heating systems, to evaluate the best technical solutions and to derive a practical guide for District Heating operators.
IEA DHC Annex TS7: Industry-DHC Symbiosis - A systemic approach for highly integrated industrial and thermal energy systems
Renewable and excess heat sources are currently representing nearly a third of the energy supply used in the DHC sector. Excess heat has the potential to further grow to become an important part of the energy puzzle. Up to 25% of district heating could be covered by industrial excess heat and more than 10 % of the EU's total energy demand for heating and hot water could be covered by heat from data centres, metro stations, service sector buildings, and waste-water treatment plants.
IEA HPT Annex 67: Digital Services for Heat Pumps
Digital services such as advanced modelling, big data methods and augmented reality are not yet widespread in the heat pump industry, although they can be essential for market penetration and decarbonisation. In the project it will be analysed how such services can be used over the life cycle, especially for product design/testing, integration, and operation/maintenance. Expertise from R&D and practice will be collected in an international database and disseminated in the industry.
IEA HPT Annex 55: Comfort and Climate Box – Speeding up market development for integrating heat pumps and storage packages
In the IEA HPT Annex 55, heat pumps with integrated thermal/electrical storage systems for existing buildings that are as close to the market as possible were developed. Furthermore, measures to accelerate market development have been worked out.
IEA HPT Task 42: Heat pumps in smart energy grids for sustainable cities
The aim of Annex 42 is to analyse the technical possibilities as well as the economic/regulatory framework conditions of heat pumps for load balancing in smart grids, which are largely controlled by electricity supplier, and to investigate the impact on thermal consumers and possible potentials, in order to work out economic incentive models for load shifting and the benefits for energy supply companies and end customers on this basis.
IEA HPT Annex 51: Acoustic Signatures of Heat Pumps
The aim of the project was to increase the acceptance of heat pumps by reducing their noise emissions and vibrations and to reduce market barriers. Using innovative measurement and data analysis methods, influencing factors on the acoustic emissions of heat pump systems and the impact of acoustic protection measures were investigated. The results were prepared in the form of guidelines and recommendations for action.
IEA HPT Annex 57: Showing flexibility benefits through heat pump implementation in multi-vector energy systems and thermal networks
This project analyzes the future implementation of heat pumps in multi-vector energy systems and thermal networks. The aim is to increase the flexibility of the energy system and to use it for various applications, e.g. for system services or to participate in different electricity markets. Using international case studies, influencing factors and potentials for flexibility options will be evaluated and suitable business models will be derived.
IEA HPT Annex 64: Safety measures for flammable refrigerants
New bans on chemicals and the revision of the so-called F-Gas Regulation pose new challenges for the heat pump and refrigeration industry. In this project, new knowledge regarding the safe future use of flammable refrigerants in heat pump and refrigeration systems up to 50 kW for room temperature control and hot water preparation is being developed and made available to the relevant target groups.
IEA HPT Annex 56: Digitalization and Internet of Things for Heat Pumps
As digitalization progresses, heat pumps are becoming part of the Internet of Things (IoT). In this project, the opportunities and challenges of IoT-capable heat pumps for the use in households, commercial enterprises and industrial applications will be investigated. The aim of the project is to provide a structured overview of IoT-enabled heat pumps.
IEA HPP Annex 28: Test procedure and seasonal performance calculation for residential heat pumps
Test procedure and seasonal performance calculation for residential heat pumps with combined space heating and heating of tap water - IEA Heat Pump Program Annex 28
IEA HPT Annex 63: Impact of heat pump placement on noise emissions
Noise emissions from heat pumps are a potential barrier for broad market diffusion of this energy efficiency technology, especially in urban areas. In this project, the influences of noise emissions in the building and in the neighbourhood are characterised, their psychoacoustic effects are analysed in more detail, and tools for digitally supporting heat pump placement are further developed. The results will be presented to relevant target groups in the form of guidelines and other documentation.