Suchergebnisse
IEA SHC Task 32: Advanced Heat Storage Concepts
IEA SHC Task 32 deals with advanced storage concepts for low energy buildings. In the project storages based on phase change materials are used in solar combisystems, in order to reduce the emissions and increase the efficiency of biomass- and gas boilers and to increase the solar fraction
IEA SHC Task 49/IV: Solar Process Heat for Production and Advanced Applications
IEA SHC Task 49/IV focussed ist work on important research questions on solar process heat within the three subtasks: Process heat collectors, their application, comparison and possible standarization; Process Integration and process intensification as required interlinkage between solar heat and production processes; Design Guidelines, case studies and promotion as key for market penetration.
IEA SHC Task 42/ECES Annex 29: Compact Thermal Energy Storage - Material Development for System Integration
The key accomplishments of the task are summarized in the following points: New material characterizing methods were investigated, a new standard for an improved DSC measurement method has been developed, a data base for PCM, TCM and sorption materials was developed and established, advances in the numerical modelling of materials, compact thermal storage systems were developed for different material applications, a tool for the economic evaluation of thermal energy storages has been developed. Also numerous joint R&D Projects and more than twenty publications arose from the IEA-SHC Task 42 networking activity.
IEA SHC Task 52: Solar Thermal & Energy Economics in Urban Environments
IEA SHC Task 52 focused on the analysis of the future role of solar thermal heat in integrated urban energy systems. The potential of solar thermal applications to cover the low-temperature heat demand in future low-carbon energy systems was investigated against the background of the rapidly changing framework conditions in the energy sector. Best practice examples for the integration of solar thermal systems into urban energy systems were evaluated and documented.
REal - The laboratory for Integrated Regional Renewable Energy Systems
In the REal project, a holistic, scalable and user-friendly concept is created, whereby sector-coupled, municipal energy systems with 100% renewable energy can be implemented, considering all necessary aspects from planning to operation, reducing design costs and accelerating an Austria-wide implementation.
see-it - Camera based, user centric daylight control system for optimized working conditions
In the project technologies in the field of building construction and building automation are being researched for quality and performance improvements in the workplace. The aim is to individualize the control of sun protection to the people who need to be protected from glare and overheating and hope to see through.
PEAR – Test facility for energy efficient automation and control of buildings
The energy demand calculated in the design phase often differs from measured values in the actual building operation. This projects reviews building automation and operation by presenting a solution how to assess energy efficiency of control strategies in the fields of air conditioning systems, concrete core activation and free cooling. The results are implemented in the demonstration building "Post am Rochus".
VERTICALurbanFACTORY
The project researches possibilities and potentials of highly efficient use of space through modern concepts of "stacked" functions and vertical production.
ENUMIS - Energetic effects of urban manufacturing in the city
The project examines the challenges of urban manufacturing (UM) from the energy perspective and shows opportunities arising from the implementation of UM concepts for the future design of sustainable energy systems for cities.
EnergyCityConcepts - Methods and concepts for the implementation of sustainable energy systems in cities
Two concrete model regions (small city Gleisdorf and urban city quarter Salzburg-Schallmoos) will be developed and tested using new methodical approaches (interdisciplinary urban and regional energy planning, modeling and simulation). Therefore, it is aimed to substantiate scenarios and concepts for the implementation of defined targets on technical, ecological and economic criteria.
Storage Cascade MZ: Storage cascade system to establish urban PLUS energy systems on the example of the city of Mürzzuschlag
In the "Storage Cascade MZ" project, battery storage systems are implemented on different grid levels in the city of Mürzzuschlag, whose measurement data enable an integrated grid monitoring and create the basis for a future expansion of the nominal power of photovoltaic (pv) systems.
ExTra - ExergyTrafos for heating and air conditioning through district heating
As a contribution to the reduction of CO2 emissions, the project aims at upgrading existing heating networks by adding new devices, so-called exergy trafos, to the heat-exchanging transfer stations. These are driven by district heat and provide heating and cooling, as well as a reduced return temperature, as a service.
CHALLENGE - Highly efficient use of hot gas and waste heat in air/water heat pumps for plus-energy buildings and quarters
CHALLENGE aims to further develop the system concept for air-to-water heat pumps in such a way that they can be used efficiently and without the above mentioned negative effects in densely built-up urban areas. In concrete terms, validated simulations and a functional model of the overall system on a laboratory scale are to be used to demonstrate that the concept can save 10% of electrical energy, reduce the noise of outdoor units in summer to a minimum and prevent the formation of local heat islands.
BIOCOOL - Bio-inspired Surfaces for the Evaporation Cooling of Building Envelopes
The BIOCOOL project will explore the transfer of morphological principles from leaves of deciduous trees, with optimized thermal properties and efficiency of evaporation to the parametric design of form-optimized architectural ceramic surfaces for climate control of building envelopes. The study paves the way for an industrial research project.
Evaluation of visionary architectural concepts
The aim of this project is to show that even at first glance unrealistic and seemingly unworkable solutions can contribute to overcome or mitigate increasingly global problems. The keywords "smart city", "smart home" (and similar ones) require solutions that are envisioned on free roads, as off-the-shelf solution often do not deliver the required output.
Urbane GmbA - Urban potential of greenable area in the obscured stock
Urbane GmbA aims to explore and assess the potential of greenable area from building and obscured stock (vertical and horizontal areas) in Vienna, to apply currently available survey instruments and to show research and development needs.
ARIS - Application of non-linear control engineering and implementation of intelligent sensor systems for the improvements of energy efficiency in the building sector
The major goal of the project was the development of innovative control concepts for controlling and optimizing heating, cooling and ventilation systems (HVAC) as well as building loads. The implementation of advanced, energy efficient non-linear control techniques in building management systems is supported by new sensor technologies that are applied to building and energy systems in order to improve their energy-efficient operation.
SPIN.OFF - Integration of storage systems in the office building Tech2Base
The research project SPIN.OFF was based on the integration of a zinc - bromine redox flow battery storage system within the Tech2Base, a planned office building in Vienna's 21st district. On the basis of this battery demonstration object questions arising with the implementation and operation process can be answered. Besides the ideal dimensioning of the battery storage system and the development of a self-learning energy management system to increase the self-consumption and to reduce load peaks, additional planning and safety related aspects were investigated.
CityCalc - Calculation Tool for Energy-Efficiency in Urban Planning
To assess the energy performance of urban planning projects in early design stages with low input and evaluation effort within the project CityCalc, an easily applicable planning and evaluation tool has been developed.
Sozial100%Erneuerbar: 100% renewable heating and cooling supply in social housing - the demonstration project Käthe-Dorsch-Gasse
100 % renewable (on-site) heating and cooling supply in social housing while achieving good living comfort. Implementation, monitoring and optimisation of an overall heating and cooling system that has not yet been implemented in this combination (especially in social housing).