Search results

There are 861 results.

Internationale Energieagentur (IEA)

IEA Hydrogen (Hydrogen TCP)

The Hydrogen TCP aims to accelerate deployment and use of hydrogen technologies by carrying out and co-ordinating collaborative activities of analysis, applied research and communication.

Internationale Energieagentur (IEA)

IEA IETS Annex 17: Membrane filtration for energy-efficient separation of lignocellulosic biomass components

The overarching goal of IEA IETS TCP Annex 17 is to strengthen the network of the Austrian membrane and biorefinery landscape. The aim is the optimized use of lignocellulose material in biorefineries by using efficient and sustainable membrane technologies. For this purpose, energy efficient membrane technologies are evaluated and optimized as well as strategies for the utilization of biomass components are developed.

Internationale Energieagentur (IEA)

IEA ISGAN Annex 3: Benefit/Cost Analyses and Tools of Smart Grids

Together with experts from 11 countries, the EI-JKU has analysed cost-benefit models and developed proposals for their adaptation and further development. In the course of the work, the EI-JKU dealt in particular with two questions: how such an evaluation model can be adapted to Austrian conditions and which socio-economic factors influence the question of whether an end consumer emerges as a winner or loser from Smart Grid-based functionalities.

Internationale Energieagentur (IEA)

IEA ISGAN Annex 5: Smart Grids International Research Facility Network (SIRFN)

The Smart Grids International Research Facility Network (SIRFN) aims at improving the implementation of Smart Grids technologies by collaboration between smart grid testing facilities, test beds, and large-scale demonstrations. By active participation, Austria’s position and leading role on the forefront of international Smart Grids development will be strengthened.

Internationale Energieagentur (IEA)

IEA ISGAN Annex 6: Power Transmission and Distribution Systems (working period 2017 - 2018)

ISGAN aims at enhancing the knowledge about Smart Grid Technologies and accelerating their international development. The main objective of the Austrian participation in IEA ISGAN Annex 6 is to acquire knowledge and develop long-term concepts for the development of an intelligent electricity system, with the focus on the interaction of distribution and transmission networks.

Internationale Energieagentur (IEA)

IEA Industrial Energy-Related Technologies and Systems (IETS TCP)

The Industrial Energy-Related Technology Programme (IETS) focuses on energy use in a broad range of industry sectors. It fosters international co-operation amongst relevant research strands, networking within and across industrial sectors, as well as exchange of information and knowledge between experts from industry, science and politics.

Internationale Energieagentur (IEA)

IEA International Smart Grid Action Network (ISGAN) Annex 6 on Power T&D Systems. Working period 2015 - 2016.

The International Smart Grid Action Network (ISGAN) aims in enhancing the knowledge about Smart Grid Technologies and accelerating the development and the international deployment. The main objective of the Austrian contribution in IEA ISGAN Annex 6 is to build up knowledge and long term concepts for the development of an intelligent and integrated electricity system, with the focus on the interaction of distribution and transmission networks, including the lead of the related subtask within the Annex.

Internationale Energieagentur (IEA)

IEA PVPS Task 12: PV Environmental Health And Safety

The aim of IEA PVPS Task 12 is to foster international collaboration in the area of photovoltaics and environment. That includes compiling and disseminating accurate Information on environment, health, safety, and other aspects of sustainability associated with the life-cycle of photovoltaics. The austrian contribution addresses LCA, implementation of sustainability aspects and dissemination.

Internationale Energieagentur (IEA)

IEA PVPS Task 14: High Penetration of PV Systems in Electricity Grids (working period 2010 - 2014)

The main goal of Task 14 is to promote the use of grid-connected PV as an important source in electric power systems at the higher penetration levels that may require additional efforts to integrate dispersed generators. The aim of these efforts is to reduce the technical barriers to achieving high penetration levels of distributed renewable systems.

Internationale Energieagentur (IEA)

IEA PVPS Task 15: Acceleration of BIPV

Building integrated Photovoltaics (BIPV) is one of the future markets for Photovoltaics which enables the combination of architecture and energy technology. IEA-PVPS Task 15 focusses on international networking and research within this technological field of expertise to, for example identify future business models or to develop approaches for international BIPV standardization.

Internationale Energieagentur (IEA)

IEA PVPS Task 1: Strategic PV Analysis & Outreach

Task 1 aims at promoting and facilitating the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. The activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation.

Internationale Energieagentur (IEA)

IEA Photovoltaic Power Systems (PVPS)

The approximately 250 experts involved in the currently 8 active tasks carry out various joint application-oriented projects for photovoltaics. The Importance of Photovoltaics for the decarbonisation of the Energy system has grown massively in recent years due to the significant decline in costs. With currently 26 participating countries and some associations, a broad international exchange of experience is possible in this research program.

Internationale Energieagentur (IEA)

IEA SHC PVT Task 60: Applications of Photovoltaic/thermal (PVT) Systems and New Fields of Application and Examples of PVT

The objectives of the task are the development of new system solutions, where the (Photovoltaic/thermal) PVT technology has clear advantages over the separate installation of PV modules and solar thermal collectors as well as standardization and cost reduction. The Austrian participation serves the establishment and deepening of know-how, the strengthening of the international network as well as the transfer and optimal conversion of the task achievements for the Austrian industry.

Energiesysteme der Zukunft

IEA SHC Task 32: Advanced Heat Storage Concepts

IEA SHC Task 32 deals with advanced storage concepts for low energy buildings. In the project storages based on phase change materials are used in solar combisystems, in order to reduce the emissions and increase the efficiency of biomass- and gas boilers and to increase the solar fraction

Haus der Zukunft

IEA SHC Task 37: Advanced Housing Renovation with Solar & Conservation

Development of advanced renovation concepts for residential buildings. For the housing segments with the greatest energy saving potentials strategies for increased market penetration of advanced housing renovation are investigated. Analysing outstanding renovation projects shall lead to technically and economically robust and sustainable concepts for housing renovation.

Internationale Energieagentur (IEA)

IEA SHC Task 42/ECES Annex 29: Compact Thermal Energy Storage - Material Development for System Integration

The key accomplishments of the task are summarized in the following points: New material characterizing methods were investigated, a new standard for an improved DSC measurement method has been developed, a data base for PCM, TCM and sorption materials was developed and established, advances in the numerical modelling of materials, compact thermal storage systems were developed for different material applications, a tool for the economic evaluation of thermal energy storages has been developed. Also numerous joint R&D Projects and more than twenty publications arose from the IEA-SHC Task 42 networking activity.

Internationale Energieagentur (IEA)

IEA SHC Task 48: Quality Assurance and Support Measures for Solar Cooling

The completed IEA SHC Task 48 focused on an enhanced quality improvement and market-support measures for the technology option ‘solar thermal cooling or air-conditioning'. In cooperation with a total of 22 organizations (12 research institutes, 5 universities and 5 companies) from eight countries numerous useful reports and tools have been created to improve the quality of solar cooling systems with significant contribution of the Austrian partners.

Internationale Energieagentur (IEA)

IEA SHC Task 49/IV: Solar Process Heat for Production and Advanced Applications

IEA SHC Task 49/IV focussed ist work on important research questions on solar process heat within the three subtasks: Process heat collectors, their application, comparison and possible standarization; Process Integration and process intensification as required interlinkage between solar heat and production processes; Design Guidelines, case studies and promotion as key for market penetration.

Internationale Energieagentur (IEA)

IEA SHC Task 51: Solar Energy in Urban Planning

The focus of IEA SHC Task 51 ‚Solar Energy in Urban Planning’ has been placed on the topic of solar energy integration in urban environment. Hereby, different international examples, options and processes for planning and implementation of solar energy measures in cities throughout the world have been screened, outlined and equipped with recommendations for further development. The core outcomes of the project address different options and possibilities for optimization of planning processes, framework conditions, tools, methods and education aiming to attain more effective and timely understanding as well as integration of solar energy in urban context.

Internationale Energieagentur (IEA)

IEA SHC Task 52: Solar Thermal & Energy Economics in Urban Environments

IEA SHC Task 52 focused on the analysis of the future role of solar thermal heat in integrated urban energy systems. The potential of solar thermal applications to cover the low-temperature heat demand in future low-carbon energy systems was investigated against the background of the rapidly changing framework conditions in the energy sector. Best practice examples for the integration of solar thermal systems into urban energy systems were evaluated and documented.