Search results

There are 876 results.

Internationale Energieagentur (IEA)

IEA PVPS Task 15: Acceleration of BIPV

Building integrated Photovoltaics (BIPV) is one of the future markets for Photovoltaics which enables the combination of architecture and energy technology. IEA-PVPS Task 15 focusses on international networking and research within this technological field of expertise to, for example identify future business models or to develop approaches for international BIPV standardization.

Internationale Energieagentur (IEA)

IEA PVPS Task 17: Photovoltaik for Transport (working period 2018 - 2021)

The IEA PVPS Task 17 focuses on the potential contributions of PV technologies to the transport sector as well as on the expected market potential of PV application in the transport sector.

Internationale Energieagentur (IEA)

IEA PVPS Task 1: Strategic PV Analysis & Outreach

Task 1 aims at promoting and facilitating the exchange and dissemination of information on the technical, economic, environmental and social aspects of PV power systems. The activities support the broader PVPS objectives: to contribute to cost reduction of PV power applications, to increase awareness of the potential and value of PV power systems, to foster the removal of both technical and non-technical barriers and to enhance technology co-operation.

Internationale Energieagentur (IEA)

IEA Photovoltaic Power Systems (PVPS)

The approximately 250 experts involved in the currently 8 active tasks carry out various joint application-oriented projects for photovoltaics. The Importance of Photovoltaics for the decarbonisation of the Energy system has grown massively in recent years due to the significant decline in costs. With currently 26 participating countries and some associations, a broad international exchange of experience is possible in this research program.

Internationale Energieagentur (IEA)

IEA SHC PVT Task 60: Applications of Photovoltaic/thermal (PVT) Systems and New Fields of Application and Examples of PVT

The objectives of the task are the development of new system solutions, where the (Photovoltaic/thermal) PVT technology has clear advantages over the separate installation of PV modules and solar thermal collectors as well as standardization and cost reduction. The Austrian participation serves the establishment and deepening of know-how, the strengthening of the international network as well as the transfer and optimal conversion of the task achievements for the Austrian industry.

Energiesysteme der Zukunft

IEA SHC Task 32: Advanced Heat Storage Concepts

IEA SHC Task 32 deals with advanced storage concepts for low energy buildings. In the project storages based on phase change materials are used in solar combisystems, in order to reduce the emissions and increase the efficiency of biomass- and gas boilers and to increase the solar fraction

Haus der Zukunft

IEA SHC Task 37: Advanced Housing Renovation with Solar & Conservation

Development of advanced renovation concepts for residential buildings. For the housing segments with the greatest energy saving potentials strategies for increased market penetration of advanced housing renovation are investigated. Analysing outstanding renovation projects shall lead to technically and economically robust and sustainable concepts for housing renovation.

Internationale Energieagentur (IEA)

IEA SHC Task 42/ECES Annex 29: Compact Thermal Energy Storage - Material Development for System Integration

The key accomplishments of the task are summarized in the following points: New material characterizing methods were investigated, a new standard for an improved DSC measurement method has been developed, a data base for PCM, TCM and sorption materials was developed and established, advances in the numerical modelling of materials, compact thermal storage systems were developed for different material applications, a tool for the economic evaluation of thermal energy storages has been developed. Also numerous joint R&D Projects and more than twenty publications arose from the IEA-SHC Task 42 networking activity.

Internationale Energieagentur (IEA)

IEA SHC Task 48: Quality Assurance and Support Measures for Solar Cooling

The completed IEA SHC Task 48 focused on an enhanced quality improvement and market-support measures for the technology option ‘solar thermal cooling or air-conditioning'. In cooperation with a total of 22 organizations (12 research institutes, 5 universities and 5 companies) from eight countries numerous useful reports and tools have been created to improve the quality of solar cooling systems with significant contribution of the Austrian partners.

Internationale Energieagentur (IEA)

IEA SHC Task 49/IV: Solar Process Heat for Production and Advanced Applications

IEA SHC Task 49/IV focussed ist work on important research questions on solar process heat within the three subtasks: Process heat collectors, their application, comparison and possible standarization; Process Integration and process intensification as required interlinkage between solar heat and production processes; Design Guidelines, case studies and promotion as key for market penetration.

Internationale Energieagentur (IEA)

IEA SHC Task 51: Solar Energy in Urban Planning

The focus of IEA SHC Task 51 ‚Solar Energy in Urban Planning’ has been placed on the topic of solar energy integration in urban environment. Hereby, different international examples, options and processes for planning and implementation of solar energy measures in cities throughout the world have been screened, outlined and equipped with recommendations for further development. The core outcomes of the project address different options and possibilities for optimization of planning processes, framework conditions, tools, methods and education aiming to attain more effective and timely understanding as well as integration of solar energy in urban context.

Internationale Energieagentur (IEA)

IEA SHC Task 52: Solar Thermal & Energy Economics in Urban Environments

IEA SHC Task 52 focused on the analysis of the future role of solar thermal heat in integrated urban energy systems. The potential of solar thermal applications to cover the low-temperature heat demand in future low-carbon energy systems was investigated against the background of the rapidly changing framework conditions in the energy sector. Best practice examples for the integration of solar thermal systems into urban energy systems were evaluated and documented.

Internationale Energieagentur (IEA)

IEA SHC Task 53: New Generation Solar Cooling & Heating Systems

IEA SHC Task 53 ‘New Generation (NG) Solar Cooling & Heating Systems’ investigates system concepts for solar electric and solar heat driven cooling and heating processes. Its main goal is the development, documentation and assessment of reliable and economically viable photovoltaic and/or solar heat operated cooling and heating systems. A comprehensive and comparative report of various NG systems and a description of support measures for their market introduction are key results of the international cooperation.

Internationale Energieagentur (IEA)

IEA SHC Task 54: Price reduction

IEA SHC Task 54 was an interdisciplinary, collaborative project with the main focus on significant price reductions of solar thermal systems. Measures to achieve a reduction of the customer price up to 40% included simplified system designs, standardized components and cost-efficient materials and production and installation processes.

Internationale Energieagentur (IEA)

IEA SHC Task 55: Towards the Integration of Large SHC Systems into DHC Networks

The growing market of solar thermal heating and cooling networks requires support in the integration of complex solar thermal systems. The Austrian project includes the management of the IEA SHC Task 55, the management of Subtask A and the introduction of Austrian project results. In the course of the research project, the integration and optimization of system components and large solar thermal heating and cooling networks are described and advanced.

Internationale Energieagentur (IEA)

IEA SHC Task 56: Building Integrated Solar Envelope System

This Task focuses on the critical analysis, simulation, laboratory test and onsite monitoring of envelope systems entailing elements that use and/or control incident solar energy. Integration of Solar Envelope solutions into the building’s HVAC and lighting systems through a systemic approach is central in this Task.

Internationale Energieagentur (IEA)

IEA SHC Task 58/ECES Annex 33: Material and Component Development for Thermal Energy Storage

The goal of the IEA Task participation is to further expand and integrate the Austrian scientific experts in the field of compact thermal energy storage in the international research community and participation into the expertise developed. All national participants have the opportunity to integrate the results of their own R&D projects into the Task, and enable further positioning and integration.

Internationale Energieagentur (IEA)

IEA SHC Task 59/EBC Annex 76: Deep Renovation of Historic Buildings - Towards lowest possible energy demand and CO2 emission (nZEB)

The aim of IEA SHC Task 59/EBC Annex 76 is the documentation of best practice examples, the development of a multidisciplinary planning process and the development of holistic reconstruction solutions for historic buildings. In addition to the lead of Subtask A (knowledge base), the Austrian participation will also incorporate and further develop results that have been achieved in national demonstration projects and have been tested in practice.

Internationale Energieagentur (IEA)

IEA SHC Task 61/EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

Lighting accounts for 19% of the global electric energy consumption, and major savings can be achieved by intelligently connecting daylighting, electric lighting and control systems. At the same time, optimal visual and non-visual conditions must be provided for the user. Within this project the user requirements for lighting solutions and existing and novel control systems will be analyzed and documented. For evaluation purposes a consistent scheme for the characterization of daylight systems and an hourly rating model for integrated solutions will be worked out. Using a monitoring protocol, implemented integral lighting solutions will be evaluated in lab and field studies.

Internationale Energieagentur (IEA)

IEA SHC Task 62: Solar Energy in Industrial Water and Wastewater Management

The main objective of IEA SHC Task 62 is to increase the use of solarthermal energy in industry, to develop newcollector technologies and to open up industrial and municipal water treatment as a newarea of application with high market potential for solar thermal energy. The nexus between solar thermal energy and water treatment enables the development of newand innovative technology combinations and the change to a sustainable, resource- and energy-efficient industry.