Search results

There are 24 results.

Haus der Zukunft

AR-HES-B – Energy storage, production and recovery of valuable substances in wastewater treatment plants

AR-HES-B develops technologically based concepts of municipal wastewater treatment plants in order to convert them from energy consumers into a hybrid energy provider, energy storage and a provider of resources. The concept enables wastewater plants to turn into an important platform in the regional energy and mass transfer.

Haus der Zukunft

CiQuSo - City Quarters with optimised solar hybrid heating and cooling systems

The project CiQuSo aimed to develop, evaluate and optimize concepts for solar energy systems to provide energy for buildings and cities. The applicability of the developed methods and concepts were shown as an example at Itzling, a part of Salzburg city.

Stadt der Zukunft

Eco.District.Heat - Potentials and restrictions of grid-bound heating systems of urban areas

Aim of the project Eco.District.Heat is to provide strategic decision-making support that enables Austrian towns and cities to deal with aspects of grid-bound heating (and cooling) systems in accordance with integrated spatial and energy planning from a holistic perspective when elaborating urban energy concepts.

Haus der Zukunft

Energy-Sponge-Bruck (Energieschwamm Bruck an der Mur)

The aim of the exploration-study for the urban region Bruck/Oberaich "Energieschwamm Bruck" or "Energy-Sponge-Bruck" was to establish clear and stringent basics for a flexible development of the future energy system. Therefore an energy development concept as well as a cadaster for short-term implementation measures had been applied. The structured, Bruck-based approach acts as framework for a general energy-conception-method, valid for small and medium urban regions with 10,000 to 20,000 inhabitants.

Stadt der Zukunft

Innovation lab act4energy

The Innovation Lab act4energy is set up as an innovation laboratory project. Its focus is to solve the problems of renewable energies integration with a focus on photovoltaic power paired with local consumption, linked to the the high fluctuation of renewable energies.

Haus der Zukunft

LTS Flywheel - Long Term Storage-Flywheel: New approaches for increasing the economically usable storage time and safety

Development of the fundamentals for a Long Term Storage (LTS)-flywheel for decentralized storage of electrical energy (e.g. from wind or PV power plants), with a significant increase in storage time (goal: 12 hours) and safety, featuring low system costs. Therefore, the LTS-Flywheel is an essential contribution to the building of the future.

Haus der Zukunft

Manage_GeoCity - Development of a method for the coordinated management of geothermal energy in urban areas

Based on the urban region Graz a method had been developed for the coordinated use and management of shallow geothermal energy for heating and cooling as well as seasonal heat storage in urban regions. Ground water flow, different geologic conditions, heating and cooling demand, heat input from solar collectors and industrial waste heat and the possibilities of seasonal heat storage in the subsurface were considered.

Stadt der Zukunft

Move2Grid – Implementation of regional energy-supply-concepts by hybrid coupling

Based on the results of the national-funded exploratory projects called “Smart Exergy Leoben”, and “Energy Sponge Bruck”, the present implementation project aims at analysing how local, renewable resources support the supply of electric mobility in Leoben in the long term and to integrate it into the municipal distribution grid in a good economic sense.

Haus der Zukunft

OPEN HEAT GRID - Open Heat Grids in urban hybrid systems

The primary research topic of OPEN HEAT GRID was to investigate the possibilities of enforcing the feed-in of industrial waste heat into existing district heating networks. The project results show that excess heat is not for free: despite minimal variable costs, the investment costs need to satisfy usual payback periods. The analysis shows that there is no need for a regulation in the sense of a feed-in obligation or market liberalization. However, from an economic point of view, information asymmetries exist, which may lead to irrational decisions.

Haus der Zukunft

P2H-Pot - Potentials, economic feasibility and system solutions for Power-to-Heat

P2H-Pot has identified economically feasible potentials for Power-to-Heat (P2H) in urban regions. The suitability of different technical system configurations were investigated using thermodynamic simulation and considering experiences from Scandinavian cases. The assessment of short, medium and long term relevance and economic feasibility of P2H were accomplished by simulating model-based scenarios up to 2050 of the Austrian and German electricity and heat market. In cooperation with a district heating company three case studies have been carried out.

Haus der Zukunft

PESI - Paradigm shift in urban energy systems through synergies with industry

Analysis of different options for the use of industrial surplus energies of various shapes (waste heat, waste water, waste) and renewable energy sources in the industrial sector (e.g. solar panels on roof surfaces) in adjacent urban areas, which act as an "energy sponge". Based on real consumption and availability data, a simulation model was created and opportunities for synergies were documented.

Haus der Zukunft

SMARTIES - SMART Innovative Energy Services - Analysis of requirements of smart energy-services

The emerging development of smart grids provides market opportunities for new ICT-based services ("smart value-added services"). Economic and organizational barriers are foreseeable that could affect the establishment of business models and service providers (data formats, connectivity, controllability, etc.). In order to improve the chances especially for new and local actors, SMARTIES proactively tries to eliminate hindrances of innovation.

Stadt der Zukunft

SOFC4City - SOFC-waste heat utilization for buildings and industry

In this project the application of a solid oxide fuel cell (SOFC) for energy supply (heat and power) of urban areas will be investigated. Due to the high temperature level of the produced heat it would be possible to use this heat for the energy supply of different heat and power consumers (residential buildings, industrial plants, etc.). One aim is to provide the SOFC-heat at several temperature levels in order to establish the advantages of the fuel cell. On the one hand the legal and market-based conditions will be evaluated, on the other hand the technological feasibility will be scoured by the use of CFD-simulation of the heat production.

Stadt der Zukunft

SRI Austria - Smart Readiness Indicator: Rating scheme and opportunities for smart buildings

Stakeholder interviews on the "smartness" of buildings, a technology screening, impact analysis and classification of possible technologies / services plus master's theses form the basis of a proposal for the national implementation of the "smart readiness indicator" of buildings and accompanying measures, in coordination with the OIB, regional and national governmental representatives.

Haus der Zukunft

SeasonalGridStorage - Innovative seasonale thermal storages for urban district heating grids

Sensible storages, which are currently used in district heating networks for seasonal storage of excess heat (e.g. from solar thermal or industrial waste heat), exhibit high space demand, investment costs and heat losses. Within this project, concepts for using innovative storage technologies, e.g. thermochemical storages (TCS) having high heat densities and enabling pressure- and lossless storage, were developed and analyzed on a technological, economic and ecological basis. Additionally, the regulatory framework has been evaluated.

Haus der Zukunft

Stakeholder process of the initiative "Reference architecture for secure Smart Grids in Austria"

The project works out the development of a smart grids reference architecture for Austria under involvement of all actors. Based on technological-scientific elements a process which meets the requirements of stakeholders like operators of infrastructure, industry and also public agencies will be worked out to achieve nationally accepted and internationally orientated reference architecture.

Haus der Zukunft

StromBIZ - demonstration projects: business models for decentralized electricity generation and distribution

Feasible business models to utilize locally generated renewable energy are expected to induce a tipping point for the "Energy Turnaround" in Austria. Within the proposed project a number of demonstration PV plants on residential and non-residential buildings had been realized. On this basis new approaches of business cases had been developed, implemented, tested and disseminated.

Haus der Zukunft

Symbiose-4-I&C - Optimal decentralized hybrid storage technologies among different energy systems -4-Industry and Commerce

The project Symbiose-4-I&C analysed the coupling of existing energy networks/-carriers, established on centralized energy network nodes or directly next to a consumer (households, industry and commerce) and the benefits of applying decentralized storage technologies. The optimal position, dimension and the right storage and conversion technology and an optimal energy wide operation of larger consumer groups were estimated for an urban model region.

Haus der Zukunft

TFlex - Temperature-flexibilisation in low-load operation of local district heating systems

Within the research project TFlex it was checked if the losses adherent to small district heating networks during low-load periods can be reduced. One possible solution is by deactivating the network and supplying the customers from previously charged decentralized storages. The optimal clustering of the storages and the possibility of solar-charging the storage were calculated with the aim of a guaranteed one-hundred percent heat supply.

Haus der Zukunft

Using buildings as energy storage - Monitoring project: Detached house H and detached house F Energy source wind power – Energy source solar power

Monitoring and comparison of performance of thermally activated building components in two similarly built, inhabited detached houses with different energy sources (wind and solar power). The functionality of energy supply through wind power or solar energy will be investigated as well as the verification of the practicability of self-regulating system control due to building temperature behaviour. The results provide an insight into the calculation assumptions, system control and feasibility of the smart grid technology.