Search results

There are 1085 results.

Internationale Energieagentur (IEA)

IEA SHC Task 42/ECES Annex 29: Compact Thermal Energy Storage - Material Development for System Integration

The key accomplishments of the task are summarized in the following points: New material characterizing methods were investigated, a new standard for an improved DSC measurement method has been developed, a data base for PCM, TCM and sorption materials was developed and established, advances in the numerical modelling of materials, compact thermal storage systems were developed for different material applications, a tool for the economic evaluation of thermal energy storages has been developed. Also numerous joint R&D Projects and more than twenty publications arose from the IEA-SHC Task 42 networking activity.

Internationale Energieagentur (IEA)

IEA SHC Task 48: Quality Assurance and Support Measures for Solar Cooling

The completed IEA SHC Task 48 focused on an enhanced quality improvement and market-support measures for the technology option ‘solar thermal cooling or air-conditioning'. In cooperation with a total of 22 organizations (12 research institutes, 5 universities and 5 companies) from eight countries numerous useful reports and tools have been created to improve the quality of solar cooling systems with significant contribution of the Austrian partners.

Internationale Energieagentur (IEA)

IEA SHC Task 49/IV: Solar Process Heat for Production and Advanced Applications

IEA SHC Task 49/IV focussed ist work on important research questions on solar process heat within the three subtasks: Process heat collectors, their application, comparison and possible standarization; Process Integration and process intensification as required interlinkage between solar heat and production processes; Design Guidelines, case studies and promotion as key for market penetration.

Internationale Energieagentur (IEA)

IEA SHC Task 51: Solar Energy in Urban Planning

The focus of IEA SHC Task 51 ‚Solar Energy in Urban Planning’ has been placed on the topic of solar energy integration in urban environment. Hereby, different international examples, options and processes for planning and implementation of solar energy measures in cities throughout the world have been screened, outlined and equipped with recommendations for further development. The core outcomes of the project address different options and possibilities for optimization of planning processes, framework conditions, tools, methods and education aiming to attain more effective and timely understanding as well as integration of solar energy in urban context.

Internationale Energieagentur (IEA)

IEA SHC Task 52: Solar Thermal & Energy Economics in Urban Environments

IEA SHC Task 52 focused on the analysis of the future role of solar thermal heat in integrated urban energy systems. The potential of solar thermal applications to cover the low-temperature heat demand in future low-carbon energy systems was investigated against the background of the rapidly changing framework conditions in the energy sector. Best practice examples for the integration of solar thermal systems into urban energy systems were evaluated and documented.

Internationale Energieagentur (IEA)

IEA SHC Task 53: New Generation Solar Cooling & Heating Systems

Within the framework of the IEA SHC Task 53 'New Generation (NG) Solar Cooling & Heating Systems', solar-electric and solar-thermal air-conditioning systems were investigated. The main objective was the development and documentation of reliable and economical NG system solutions. A comprehensive comparison of different NG systems as well as the elaboration of support measures for the market launch are core results of the international cooperation.

Internationale Energieagentur (IEA)

IEA SHC Task 54: Price reduction

IEA SHC Task 54 was an interdisciplinary, collaborative project with the main focus on significant price reductions of solar thermal systems. Measures to achieve a reduction of the customer price up to 40% included simplified system designs, standardized components and cost-efficient materials and production and installation processes.

Internationale Energieagentur (IEA)

IEA SHC Task 55: Integrating Large SHC Systems into DHC Networks

Despite the large potential for integrating large solar thermal plants into district heating and cooling networks, the share of solar heat worldwide is below 1%. The aim of this project was to analyse the technical, economic, and regulatory barriers that hinder a faster market development of such systems, and to propose solutions to support the growing heat market. The results (roadmaps, data, information) are available in the form of fact sheets.

Internationale Energieagentur (IEA)

IEA SHC Task 56: Building Integrated Solar Envelope Systems for HVAC and Lighting

IEA SHC Task 56 focused on the critical analysis, simulation, laboratory testing and onsite monitoring of envelope systems entailing elements that use and/or control incident solar energy. The central task was the integration of HVAC and lighting systems into a building’s Solar Envelope solution through a systemic approach.

Internationale Energieagentur (IEA)

IEA SHC Task 58/ECES Annex 33: Material and Component Development for Thermal Energy Storage

This Task/Annex addresses second generation materials for PCM and TCM energy storage and includes material development, characterization and testing under application conditions. In addition, the focus was on the interaction between material and storage component and on the expected storage performance of innovative materials.

Internationale Energieagentur (IEA)

IEA SHC Task 59/EBC Annex 76: Deep Renovation of Historic Buildings - Towards lowest possible energy demand and CO2 emission (nZEB)

The goal of Task 59 was to document international best practice examples (knowledge base), develop a multidisciplinary planning process, and develop holistic retrofit solutions for historic buildings. As a knowledge base, the Historic Building Retrofit Atlas (www.HiBERatlas.com) emerged from the project. In the HiBERatlas more than 55 best practice examples are documented. In addition to the management of Subtask A (Knowledge Base) and Subtask C (Conservation compatible retrofit solutions & strategies), innovative technical and organizational retrofit solutions, which have already been applied in national demonstration projects and tested in practice, have been incorporated and further developed through the Austrian participation.

Internationale Energieagentur (IEA)

IEA SHC Task 61/EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting

Lighting accounts for around 15% of global electricity consumption - intelligent coordination of daylighting and electric lighting solutions together with integral lighting controls enable significant energy savings. At the same time, the solutions must be optimally planned in a user-centered approach based on the visual and non-visual effects of light. The task analysed user requirements as well as existing technologies and design methods and documented exemplary implementations in case studies.

Internationale Energieagentur (IEA)

IEA SHC Task 62: Solar Energy in Industrial Water and Wastewater Management

The main objective of IEA SHC Task 62 is to increase the use of solarthermal energy in industry, to develop newcollector technologies and to open up industrial and municipal water treatment as a newarea of application with high market potential for solar thermal energy. The nexus between solar thermal energy and water treatment enables the development of newand innovative technology combinations and the change to a sustainable, resource- and energy-efficient industry.

Internationale Energieagentur (IEA)

IEA SHC Task 67: Compact Thermal Energy Storage Materials within Components within Systems

This Task aims to push forward the compact thermal energy storage (CTES) technology developments to accelerate their market introduction through the international collaboration of experts from materials research, components development and system integration. These technologies are based on the classes of phase change materials (PCM) and thermochemical materials (TCM). Materials from these classes will be studied, improved, characterized and tested in components.

Internationale Energieagentur (IEA)

IEA SHC Task 68: Efficient Solar District Heating Systems (Working period 2022 - 2024)

Regarding the use of CO2-free technologies for local/district heating systems, solar technologies in particular offer an efficient option. In this task, the opportunities and challenges are investigated in order to efficiently provide the required temperatures necessary for local/district heating networks through solar technologies, to promote digitalisation, to identify new business models and measures for cost reduction, and to spread the knowledge about the potential of solar district heating systems.

Internationale Energieagentur (IEA)

IEA Solar Heating and Cooling (SHC)

Since 1977 the IEA Solar Heating and Cooling Programme supports joint research and development activities in the field of solar thermal technologies focusing solar thermal for heating and cooling of buildings, for industrial applications and in agriculture.

Internationale Energieagentur (IEA)

IEA TCP Fluidized Bed Conversion (FBC). Working period 2013-2016

The Technology Collaboration Programme includes the collaboration, the exchange of relevant information and networking in the area of fluidized bed conversion of fuels applied for clean energy production.

Internationale Energieagentur (IEA)

IEA UsersTCP: Social License to Automate

Automation applications for load shifting, also in the homes of end customers, will play an important role in the current transformation process of the energy system. The project “Social License to Automate” examined the question, which aspects are important for the success of these innovations and technologies, and under which circumstances end users are prepared to accept or reject energy-related automation processes.

Internationale Energieagentur (IEA)

IEA UsersTCP: “Empowering all” Gender in policy and implementation for achieving transitions to sustainable energy

The Annex supports the design of a more efficient and inclusive energy system by integrating gender perspectives. Based on case studies and best practice examples, country-specific recommendations for inclusive energy policies will be elaborated.

Internationale Energieagentur (IEA)

IEA Wind Energy Systems (Wind TCP)

The mission of the Wind TCP is to stimulate co-operation on wind energy research and development and to provide high quality information and analysis to member governments and commercial sector leaders. The focus lies on technology development and deployment, as well as market and policy instruments.