Projekt-Bilderpool

Es wurden 312 Einträge gefunden.

Nutzungshinweis: Die Bilder auf dieser Seite stammen aus den Projekten, die im Rahmen der Programme Stadt der Zukunft, Haus der Zukunft und IEA Forschungskooperation entstanden sind. Sie dürfen unter der Creative Commons Lizenz zur nicht-kommerziellen Nutzung unter Namensnennung (CC BY-NC) verwendet werden.

Luftbild Case Study Gleisdorf

Luftbild Case Study Gleisdorf

PV Markt Weltweit 2020

PV Markt Weltweit 2020

Länder mit höchstem PV Anteil an nationalem Strombedarf

Länder mit höchstem PV Anteil an nationalem Strombedarf - weltweit im Jahre 2020 5% des weltweiten Strombedarfs wurde 2020 durch Photovoltaik erzeugt.

IEA PVPS Task 1

Gruppenfoto beim PVPS Task 1 - Meeting in Montreux, Schweiz

PV Fassade Innovametall

Fassade der Fa. Innovametall Freistadt

PV Schallschutz

PV Lärmschutz - Ulmerwelle

Technology Readiness Level, TRL, verschiedener mobiler Anwendungen von Brennstoffzellensystemen.

Im Bereich der Raumfahrt, Flurförderfahrzeuge, PKWs und Bussen können TRL zwischen 7,5 bis 9 erreicht werden. Leichte Nutzfahrzeuge, Zweiräder und Züge erreichen einen TRL zwischen 6,5 und 7 und die Luft- und Schifffahrt einen TRL von 5,5.

Vision einer nachhaltigen Wasserstoffwirtschaft

Grüner Strom aus Wind, Wasser und Sonne soll primär direkt in das Stromnetz eingespeist werden. Überschüsse können mittels Power-to-Hydrogen-Verfahren in H2 umgewandelt werden und über geeignete Transportwege verteilt und mittels Speichertechnologien gespeichert werden. Grüner Strom und H2 werden dann der Industrie, Mobilität und den Haushalten zur Nutzung zugeführt.

Vergleich von Komponenten-Herstellungskosten für Brennstoffzellen aktuell und zukünftig

Die Kostenanalyse bezieht sich auf einen Absatz von 100.000 Brennstoffzellen-Systemen pro Jahr. Mit der aktuellen Technologien können hierbei bis zu 73 $/kW erzielt werden, bei zukünftigen Technologien 2030 bis zu 60 $/kW. Größtes Reduktionspotential mit minus 33 % liegt beim Brennstoffzellen-Stack.

Vergleich batterie-elektrischer/wasserstoffbasierter Antrieb für schwere Nutzfahrzeuge.

Die verminderte Zuladekapazität bei BEV aufgrund des hohen Batteriegewichts führt bei gleicher zu transportierender Last zu einer Verdoppelung des Verkehrs. Dadurch kommt es trotz höherem Wirkungsgrad des BEV-Einzelfahrzeuges zu einem in Summe höheren Energieverbrauch.

Analyse zum Vergleich von verschiedenen Antriebsoptionen und der Break-Even Punkt der TCO-Kosten.

Der generelle Trend zeigt, dass der BZ-Antrieb ab 2030 in allen Fahrzeugkategorien hinsichtlich der TCO-Kosten gegenüber der VKM und dem BEV konkurrenzfähig ist. Ab 2040 werden für FCEV als auch BEV ähnliche TCO-Kosten in allen Fahrzeugkategorien zu erwarten sein.

Kellerseitige Installation eines Brennstoffzellen-Heizsystems

Die Abbildung zeigt eine typische Installation eines Brennstoffzellen-Heizsystems im Heizungskeller eines Gebäudes.

Innenaufbau eines Brennstoffzellen-Heizgeräts

Die Abbildung zeigt den Innenaufbau und Komponenten eines Brennstoffzellen-Heizgeräts.

Brennstoffzellen-Heizgerät Vitovalor des Unternehmens Viessmann

Die Abbildung zeigt ein Brennstoffzellen-Heizgerät des Unternehmens Viessmann. In Deutschland zählt dieses System zu einem der meistverkauften Brennstoffzellen-Anlagen.

Fassade Bürogebäude H2

Ansicht der Fassade des Bürogebäudes H2 in Wien, wo ein Digitaler Zwilling einer Kälteanlage und eines Mustergeschoßes erprobt wurde.

Aufbau eines digitalen Zwillings

Diese Grafik zeigt schematisch den Aufbau eines digitalen Zwillings, der über einen Gateway mit der Gebäudeleittechnik eines Gebäudes verbunden ist. Der digitale Zwilling ist in einer Cloud installiert, wo verschiedene Stakeholder Zugriff haben.

Grafische Darstellung eines digitalen Zwillings

Grafische Darstellung eines digitalen zwillings, der mit Echtzeitmessdaten von einem Gebäude verbunden ist. In einer Cloud läuft der digitale Zwilling. Mit dem sog. State Estimator wird das Simulationsmodell laufend an die aktuellen Messdaten vom Gebäude angepasst.

Zeitreihe mit Forcing Terms

Zeitreihe eines Versuchs, wo der digitale Zwilling mithilfe von Forcing Terms an die Messdaten angepasst wurde. Zu Beginn der Messreihe stimmen die gemessene und die simulierte Temperatur noch nicht über ein. Danach sind die Differenzen zwischen den beiden Werten nur sehr klein. Siehe auch anderes Bild, das die dafür benötigen Wärmequellen und -senken zeigt.

Berechnete Wärmequellen und -senken für den digitalen Zwilling

Zeitreihe eines Versuchs, wo der digitale Zwilling mithilfe von Forcing Terms an die Messdaten angepasst wurde. Die Grafik zeigt die dafür benötigten "Forcing Terms" = Wärmequellen und -senken. Siehe auch die andere Grafik mit den dazugehörigen gemessenen und simulierten Temperaturen während des Versuchs.

Urban Straw Aussenwand verputzt

Urban Straw System Außenwand mit mineralischem Außenputz.