Projekt-Bilderpool
Es wurden 417 Einträge gefunden.
Nutzungshinweis: Die Bilder auf dieser Seite stammen aus den Projekten, die im Rahmen der Programme Stadt der Zukunft, Haus der Zukunft und IEA Forschungskooperation entstanden sind. Sie dürfen unter der Creative Commons Lizenz zur nicht-kommerziellen Nutzung unter Namensnennung (CC BY-NC) verwendet werden.
Solarpark Tailum Bend, Südaustralien
187 MW Solarpark in Tailum Bend, Südaustralien
Copyright: AIT Austrian Institute of Technology
IEA-PVPS Task 14 ExpertInnen Meeting Xian, China, 2019
Meeting der ExpertInnen aus dem IEA-PVPS und VertreterInnen aus China, bei TBEA, Xian, China im November 2019.
Copyright: IEA-PVPS
IEA-PVPS Task 14 Netzintegrationsworkshop in Tokyo, Japan
Internationale ExpertInnen aus dem Task 14 sowie dem japanischen Elektrizitätssektor und der Forschung beim NEDO/Task 14-Workshop in Tokyo, Japan im November 2022
Copyright: IEA-PVPS Task 14 - NEDO
Überblick über das aktuelle BIPV- Netzwerk in Österreich
Die Abbildung zeigt die Verbindungen zwischen den Akteuren innerhalb des BIPV-Sektors, wobei ihre Beziehungen zu verschiedenen Gruppen hervorgehoben werden. Diese Verbindungen, insbesondere mit kleineren Akteuren, stellen Gruppenzugehörigkeiten dar, die durch die farblich markierten Verbindungen angezeigt werden. Innerhalb dieses Netzwerks lassen sich fünf Hauptgruppen ausmachen: Modul- und Systemhersteller, Plattformen, Universitäten, Forschungsinstitute und der Bereich Politik und Regulierung. Zu der letztgenannten Gruppe gehören auch die Planer, unterteilt in Bauphysiker und Architekten. Insbesondere die Fassaden- und Dachspezialisten innerhalb der BIPV werden unter den Modul- und Systemherstellern eingeordnet. Es ist wichtig zu erwähnen, dass einige Dachdec Firmen wie Prefa und Wienerberger Photovoltaikmodule von europäischen PV-Herstellern verwenden und in ihre Bauprodukte integrieren. Kioto Photovoltaics zum Beispiel ist in diesem Zusammenhang ein häufiger Outsourcing-Partner. Andere Unternehmen wie Sunplugged, Wienerberger und Bramac spielen ebenfalls eine wichtige Rolle in diesem Ökosystem. Während einige bereits mit der Produktion von BIPV-Modulen begonnen haben, konzentrieren sich andere auf die Forschung oder befinden sich in der Entwicklungsphase ihres Produktangebots. Eternit verweist auch auf die Integration von Photovoltaik in Bauprodukte durch Eternit, ein auf Faserzementprodukte spezialisiertes Unternehmen. Eternit bietet BIPV-Lösungen an, bei denen die PV-Technologie in seine Bauprodukte integriert wird, um sowohl ästhetische als auch funktionale Vorteile zu bieten.
Copyright: Momir Tabakovic
Technologie Radar für Solarenergiegebäude
Das Technology Radar für Solarenergiegebäude, entwickelt von der IEA SHC Task 66 Subtask D Gruppe unter der Leitung von AEE INTEC, bietet eine umfassende Bewertung von über 50 Technologien und Lösungen, die zu Solarenergiegebäuden beitragen. Es kategorisiert Maßnahmen in vier zentrale Bereiche: Erzeugung, Speicherung, thermische Netze sowie Gebäude & Gemeinschaft und bewertet deren Marktreife, Wettbewerbsfähigkeit und Potenzial zur Einführung. Darunter wurden 24 Technologien wie PV, Solarthermie, Biomassekessel, PVT-Kollektoren und Niedertemperatur-Fernwärmenetze als besonders marktrelevant hervorgehoben. Die Analyse berücksichtigt Faktoren wie Markteintrittsbarrieren, regulatorische Auswirkungen sowie den Gesamtwert und das Wachstumspotenzial jeder Lösung. Um Stakeholder wie Architekten und Ingenieure zu unterstützen, erstellt das Team detaillierte Faktenblätter und wird die Ergebnisse im 2025 erscheinenden Bericht Neue Technologien und Komponenten für Solarenergiegebäude veröffentlichen.
Copyright: AEE INTEC
IEA SHC Task 66: Solar Energy Buildings - Präsentation der Finalen Ergebnisse
Die IEA SHC Task 66 „Solar Energy Buildings“ präsentierte die Endergebnisse ihrer Aktivitäten auf der EuroSun-Konferenz 2024 in Limassol, Zypern, am Dienstag, den 27. August, von 11:00 bis 12:30 EEST. Über drei Jahre hinweg arbeitete ein internationales Team von Wissenschaftlern und Branchenvertretern gemeinsam am Thema „Solar Energy Buildings“. Die Veranstaltung beinhaltete Präsentationen des Task-Managers, der Subtask-Leiter sowie eines Branchenvertreters. Dr. Harald Drück, Manager der Task 66 vom IGTE der Universität Stuttgart, gab einen Überblick über das Projekt und hob wichtige Ergebnisse hervor. Die Subtask-Leiter präsentierten Zusammenfassungen ihrer Ergebnisse: Prof. Frank Späte (OTH-AW, Deutschland) stellte wichtige Leistungsindikatoren zur Bewertung von Solarenergiegebäuden vor, während Elsabet Nielsen (Technische Universität Dänemark) Demonstrationsprojekte realisierter Solarenergiegebäude präsentierte. Michael Gumhalter (AEE INTEC, Österreich) beleuchtete aktuelle und zukünftige Technologien in diesem Bereich. Zusätzlich hielt Zanil Narsing von Naked Energy Ltd. (Großbritannien) einen Vortrag zum Thema „Solarenergiegebäude mit fortschrittlichen solarthermischen und photovoltaisch-thermischen (PVT) Kollektoren.“ Weitere Informationen zur Task 66 finden Sie auf der Website: https://task66.iea-shc.org/.
Copyright: AEE INTEC
Fact sheets für neue Technologien in Solarenergiegebäuden
Fact Sheets für Technologien im Bereich Solarenergiegebäude wurden im Rahmen von IEA SHC Task 66 Subtask D entwickelt, um prägnante, leicht zugängliche Zusammenfassungen der wichtigsten Solartechnologien bereitzustellen und so Stakeholdern bei fundierten Entscheidungen zu helfen. Sie enthalten Informationen zu Fortschritten, Vergleichen und der Eignung für verschiedene Klimazonen, Gebäudetypen und regionale Anforderungen. Kategorisiert in Bereiche wie Erzeugung, Speicherung, Gebäude und Netze, heben die Faktenblätter Integrationsstrategien für effektive Solarenergiesysteme hervor. Durch Verweise auf wissenschaftliche Publikationen und die Präsentation von Praxisbeispielen zeigen sie die Funktionsweise und Eigenschaften von ausgewählten Technologien.
Copyright: AEE INTEC
Digitale Technologien zur Steigerung der Energieeffizienz in elektrischen Motorsystemen
Diese Abbildung gibt einen Überblick über die Technologien, die als relevant für die Energieeffizienz in elektrischen Motorsystemen identifiziert und in mehreren Workshops, in der Umfrage und Gesprächen als relevant eingestuft wurden. Beginnend auf der linken Seite der Abbildung sind intelligente Sensoren und erweiterte Steuerung auf Maschinenebene sowie das Internet der Dinge, die eine Kommunikation zwischen den verschiedenen Ebenen und Komponenten ermöglicht, dargestellt. Weiters bestehen zahlreiche Möglichkeiten zur Datenanalyse und damit zur Optimierung des Betriebs: Datenanalyse sowohl auf der Ebene der Motorsysteme als auch auf der Ebene der Produktionslinien oder sogar des gesamten Unternehmens. Eine dabei oft eingesetzte Technologie ist die Echtzeit-Überwachung der verschiedenen Geräte. Technologien, die diesen Anwendungen Vorteile bringen, sind digitale Zwillinge, cloudbasierte Dienste und künstliche Intelligenz. Augmented Reality kann helfen, die vorgeschlagenen Maßnahmen umzusetzen kann aber auch zur Analyse eingesetzt werden. Drei Technologien, die nicht direkt mit der Optimierung motorgetriebener Systeme zusammenhängen, allerdings breitere Beachtung finden sind z. B. Drohnen, 3D-Druck und fortschrittliche Robotik.
Copyright: Österreichische Energieagentur, impact energy
Möglichkeiten zum Erkennen von Störungen der Pumpen- und Motorfunktion durch Strom- und Spannungsanalyse
Auf dieser Grafik ist links der Querschnitt einer Radialpumpe zu sehen. Diese ist über eine Achse mit einer Kupplung mit dem Querschnitt eines Elektromotors verbunden. An diesem Motor ist eine Verbindung zu einem Rechteck mit der Bezeichnung FU für Frequenzumrichter verbunden, die dickere Verbindung teilt sich kurz davor in drei Linien auf, die drei Phasen darstellen. An diesen Linien sind mit kleinen Kreisen drei andersfarbige Linien eingezeichnet, die die dreiphasige Strom- und Spannungsmessung darstellen und zu einem kleinen aufrechten Rechteck führen. Ganz rechts bei der Pumpe ist ein Feld mit Text eingezeichnet, der mit einem Pfeil auf den Pumpenquerschnitt zeigt. Im Text steht Folgendes: Ein Anstieg des Rauschpegels um die Versorgungsfrequenz herum ist typisch für Pumpenkavitation. Ein weiteres Feld zeigt auf die Kupplung zwischen Pumpe und Motor, ein kleines Rechteck als Verbindung zwischen Pumpen- und Motorachse. Der Text dazu lautet: Ein Anstieg bei der Rotationsfrequenz des Motors und ihren Oberschwingungen sowie ein Anstieg im Rauschpegel sind typisch für einen Kupplungsfehler. Ein weiteres Feld zeigt auf die Stelle, wo die Motorachse aus dem Motorgehäuse herauskommt, wo ein Lager eingezeichnet ist. Der Text in diesem Feld lautet: Ein Anstieg bei der Käfigfrequenz des Wälzlagers ist typisch für einen Lagerverschleiß. Die bisher genannten Textfelder sind mit blauer Farbe hinterlegt. Diese Farbe kennzeichnet mechanische Fehler. Ein weiteres rot hinterlegtes Feld deutet auf das Innere des Elektromotors. Der Text lautet: Kurzschlüsse bei der Statorwicklung weisen typischerweise einen Anstieg bei ungeraden Stromoberschwingungen auf. Die rote Farbe bedeutet, dass es sich um einen elektrischen Fehler handelt.
Copyright: Österreichische Energieagentur
Digitale Technologien zur Steigerung der Energieeffizienz in elektrischen Motorsystemen
Die Abbildung gibt einen Überblick über die Technologien, die als relevant für die Energieeffizienz in elektrischen Motorsystemen identifiziert und in mehreren Workshops, in der Umfrage und Gesprächen als relevant eingestuft wurden. Beginnend auf der linken Seite der Abbildung sind intelligente Sensoren und erweiterte Steuerung auf Maschinenebene sowie das Internet der Dinge, die eine Kommunikation zwischen den verschiedenen Ebenen und Komponenten ermöglicht, dargestellt. Weiters bestehen zahlreiche Möglichkeiten zur Datenanalyse und damit zur Optimierung des Betriebs: Datenanalyse sowohl auf der Ebene der Motorsysteme als auch auf der Ebene der Produktionslinien oder sogar des gesamten Unternehmens. Eine dabei oft eingesetzte Technologie ist die Echtzeit-Überwachung der verschiedenen Geräte. Technologien, die diesen Anwendungen Vorteile bringen, sind digitale Zwillinge, cloudbasierte Dienste und künstliche Intelligenz. Augmented Reality kann helfen, die vorgeschlagenen Maßnahmen umzusetzen kann aber auch zur Analyse eingesetzt werden. Drei Technologien, die nicht direkt mit der Optimierung motorgetriebener Systeme zusammenhängen, allerdings breitere Beachtung finden sind z. B. Drohnen, 3D-Druck und fortschrittliche Robotik.
Copyright: Österreichische Energieagentur, impact energy
Instrumente zur Überwindung der Barrieren bei Nutzung digitaler Technologien
Rund drei Viertel der Befragten betrachten die Entwicklung von Bildungsprogrammen und den Standardisierungsprozess zur Harmonisierung von Protokollen sowie Forschungssubventionen als wichtige politische Instrumente zur Überwindung dieser Hindernisse.
Copyright: Österreichische Energieagentur
Überblick möglicher Messpunkte zur Digitalisierung von Druckluftanlagen
Auf der Grafik sind ein Kompressor im Form eines größeren Vierecks zu erkennen. Hier sind Virbrationsmessung und Strom- und Spannungsmessung als kleine Kreise angefügt. Auf dem Viereck ist ein kleines Rechteck mit dem Hinweis: Interne Kompressorsteuerung. Außerdem gibt es eine dicke Verbindung zu einem weiteren Rechteck zu übergeordneter Steuerung. In der Nähe ist ein kleiner Kreis für die Raumtemperatur. Aus dem Kompressor kommt eine Leitung zu einem Druckluftfilter mit elektronischer Drucküberwachung und weiter zu einem größeren Rechteck, dem Trockner. Die Leitung verläuft nach zwei weiteren Druckluftfiltern zum Druckbehälter, einem größeren Oval mit drei Füßen. Die Leitung verläuft weiter aus dem Druckbehälter. Hier sind dann nacheinander die kleinen Kreise mit den Bezeichnungen für Druckmessung, Volumenstrommessung, Temperaturmessung, Taumpunktmessung und Messung für Restölgehalt und Partikel angeführt, außerdem ist ein elektrisch betriebener Absperrhahn eingezeichnet. Rund um diese Komponenten ist eine strichlierte Linie im Form eines Rechtecks für die Kompressorstation eingezeichnet. Die Leitung verläuft weiter aus diesem Rechteck. In weiterer Folge sind Druckmessung und Volumenstrommessung einzeichnet sowie ein elektrisch betätigtes Absperrventil. Am Ende der Leitung ist wieder ein Rechteck eingezeichnet mit der Aufschrift: Verbraucher. Innerhalb des strichlierten Rechtecks über den genannten Komponenten befinden sich zwei Zeichen, eines in Form eines Computerbildschirms mit der Bezeichnung: Datenauswertung und -analyse, darüber eine blaue Wolke mit der Bezeichnung: Cloud (optional). Alle genannten Messung sind über eine strichlierte Linie mit der Datenauswertung verbunden.
Copyright: Österreichische Energieagentur
Gruppenfoto des Battery Safety Talks mit Sprecher und Veranstalter
Am 15. Mai 2024 versammelten sich rund 80 Fachleute aus der Mobilitätsbranche beim Green Testing Lab im Ökopark Hartberg, um sich über die neusten Entwicklungen sowie Herausforderungen zum Thema Batteriesicherheit in der E-Mobilität auszutauschen. In insgesamt sieben Vorträgen lieferten namhafte Vortragende wertvollen Input aus verschiedenen Blickwinkeln, der durch anschließende Fachdiskussionen vertieft wurde.
Copyright: Green Testing Lab GmbH
Fachpublikum aus ganz Österreich beim Battery Safety Talk 2024
Rund 80 Experten aus Forschung, Entwicklung, Industrie und von Behörden können sich im Rahmen des Battery Safety Talks im Mai 2024 zum Thema Batteriesicherheit austauschen. Veranstalter war das Green Testing Lab in Hartberg, welcher die Möglichkeit schuf unterschiedliche Blickwinkel kennen zu lernen und mit Experten aus verschiedenen Bereichen in Diskussion zu treten.
Copyright: Green Testing Lab GmbH
Gastgeber des Battery Safety Talks und Gründer von Green Testing Lab Max Hofer begrüßt die Teilnehmer:innen
Im Zuge des Battery Safety Talks lieferten namhafte Vortragende sieben Vorträgen aus verschiedenen Blickwinkeln zum Thema Batteriesicherheit. Ziel der Veranstaltung war die Vernetzung von Fachleuten, um Wissen zu teilen und somit die Sicherheit in diesem Bereich zu erhöhen.
Copyright: Green Testing Lab GmbH
Luftbild der Papierfabrik Norske Skog in Bruck an der Mur
Auf dem Gelände der Papierfabrik hat im März 2022 ein Reststoffkraftwerk wieder den Betrieb aufgenommen. Das Kraftwerk ist eine Wirbelschichtanlage, mit der Norske Skog den CO2-Ausstoß um bis zu 150.000 Tonnen pro Jahr verringert.
Copyright: Norske Skog Bruck GmbH
Anspruchsvolle Brennstoffe
Aussortierte Metallfraktion von dem Brennmaterial einer zirkulierenden Wirbelschichtanlage. Metallreste und Holz mit Nägeln werden aussortiert und nicht verbrannt.
Copyright: IEA-FBC (Franz Winter)
Forschungsleistung nach Bevölkerunganzahl
In dem Diagramm wurde für jedes Land die Anzahl an veröffentlichten Beiträgen pro hunderttausendsten Einwohner:innen berechnet, wodurch der Beitrag unabhängig von der Bevölkerungsgröße der einzelnen Länder besser ersichtlich ist. In dieser Auswertung steht Österreich auf Patz 7. Es wurden hier nur alle Artikel inkl. 2019 verwendet.
Copyright: IEA-FBC (Franz Winter)
Verschiedene Integrationsebenen von Hochtemperatur-Wärmepumpen und ihrer Auswirkungen
Die Grafik zeigt verschiedene Ebenen, auf denen die Integration einer Hochtemperatur-Wärmepumpe erfolgen kann, sowie die Auswirkungen. Eine genauere Beschreibung ist im Task 3 Bericht des IEA HPT Annex 58 und im Leitfaden für die Entwicklung einer Dekarbonisierungsstrategie (https://heatpumpingtechnologies.org/annex58/task-3/) zu finden.
Copyright: Danish Technological Institute
Allgemeiner Vergleich zwischen Dampferzeugung mit Erdgas befeuerten Kessel und Wärmepumpentechnologien
Die Grafik zeigt die herkömmliche Dampferzeugung mit erdgasbefeuertem Kessel im Vergleich zur Dampferzeugung mit Wärmepumpentechnologien. Bei der Dampferzeugung mit erdgasbefeuerten Kesseln wird der Dampf im Allgemeinen mindestens auf dem höchsten im Produktionsprozess benötigten Druckniveau erzeugt und anschließend auf niedrigere benötigte Druckniveaus entspannt. Im Vergleich dazu ist es bei der Dampferzeugung mit Wärmepumpe von Vorteil, wenn nur die Dampfmenge, die auf dem entsprechenden Druckniveau benötigt wird, auch auf diesem Druckniveau erzeugt wird. Eine Entspannung auf ein niedrigeres Temperaturniveau sollte bei der Anwendung von Wärmepumpen vermieden werden. Mehr Informationen zur Dampferzeugung mit Wärmepumpen sind im IEA HPT Annex 58 Task 2 Bericht (https://heatpumpingtechnologies.org/annex58/task-2-integration-concepts/) zu finden.