Projekt-Bilderpool

Es wurden 221 Einträge gefunden.

Nutzungshinweis: Die Bilder auf dieser Seite stammen aus den Projekten, die im Rahmen der Programme Stadt der Zukunft, Haus der Zukunft und IEA Forschungskooperation entstanden sind. Sie dürfen unter der Creative Commons Lizenz zur nicht-kommerziellen Nutzung unter Namensnennung (CC BY-NC) verwendet werden.

Außenluftansaugung der Passivhauswohnanlage Lodenareal

Das Foto zeigt den Innenhof der Passivhauswohnanlage in Innsbruck mit den Ansaugöffnungen für die kontrollierte Wohnraumlüftung.

Feinstaubpartikel-Emissionen beim Kochen

Die Abbildung zeigt die emittierte Feinstaubpartikelmasse in Abhängigkeit der Partikelgröße für drei verschiedene Kochprozesse.

Beispielhafte Darstellung der Raumluftqualitätsbewertung von Subtask 1

Ein Beispiel für eine Raumluftqualitäts-/ Energiesignatur für Niedrigenergie-Wohngebäude (die hier dargestellten Daten dienen nur der Veranschaulichung und stellen keine reale Situation dar).

Innenraum-Luftschadstoffe in Wohngebäuden

Die Abbildung illustriert die möglichen verschiedenen Schadstoffquellen der Innenraumluft in Wohngebäuden.

Schematische Darstellung des aktiven Überströmprinzips

Diese Abbildung zeigt ein Beispiel wie das Prinzip der aktiven Überströmung in einer Wohneinheit umgesetzt werden kann.

Attraktivität der Märkte für solare Fernwärme

Diagramm mit 4 Bereichen je nach Technologiereife der Fernwärme (gering bzw. hoch) und Markt für solare Fernwärme (klein bzw. groß). Im Bereich geringe Reife und kleiner Markt befinden sich Russland und Ukraine; im Bereich geringe Reife und großer Markt befindet sich China; im Bereich hohe Reife und kleiner Markt befinden sich Frankreich, Italien, Niederlande, Serbien, Slowenien, Spanien, Lettland; im Bereich hohe Reife und großer Markt befinden sich Deutschland, Österreich, Dänemark, Schweden, die Technologieführer und Vorreiter sind.

Solarwärme in Smart-Cities

Auflistung der wesentlichen Vorteile der Solarwärme: sie ist emissionsfrei und zu 100% erneuerbar, sie erhöht die Versorgungssicherheit, der Preis ist bezahlbar und bleibt über 20 Jahre konstant, sie ersetzt importierte Energieträger und bietet neue Arbeitsplätze.

Dänische Erfolge bei solarer Fernwärme

Darstellung des Stands 2019: 1 GW installierte Solarkapazität bei Wärmenetzten, 60% Deckung des gesamten Wärmebedarfs, 120 Dörfer und Städte verwenden Solarwärme, der Preis liegt zwischen 20 und 40 €/MWh, die optimalen Lösungen sind günstiger als Gas.

Solare Fernwärme mit Strom-Wärme-Kopplung

Schema eines Fernwärmesystems mit Wärmeeinspeisung aus zentralen solarthermischen Kollektoren, Industrie-Abwärme, Heizzentrale, Wärmepumpe und mit Kurzzeit- und saisonalem Wärmespeicher. Quelle der Wärmepumpe ist der saisonale Speicher. Überschussstrom aus PV- und Windanlagen wird für den Betrieb der Wärmepumpe verwendet.

Wirtschaftliche Effekte durch reduzierte Temperaturen

Übersicht über die prognostizierten wirtschaftlichen Auswirkungen, entsprechend dem Kostenreduktionsgradienten (CRG) in €/(MWh·°C), von reduzierten Systemtemperaturen

Entwicklung von Technologie spezifischen Kennzahlen

Konzept der energiewirtschaftlichen Bewertungen mit der Kennzahl „Cost Reduction Gradient“ (CRG) in €/(MWh·°C)

Links: Der Teufelskreis hoher Systemtemperaturen / Lock-in, rechts: der Mehrwert niedriger Systemtemperaturen

Darstellung der unterschiedlichen Zusammenhänge zwischen den Systemtemperaturen, der Erzeugungsstruktur, den Auswirkungen im System und auf den Kunden

Übersicht der Antriebsformen von Baugeräten

Durch Baugeräte verursachte Emissionen können durch CO2-neutrale Antriebssysteme oder erneuerbare Kraftstoffe reduziert werden. Die Energiequelle zur Gewinnung oder Herstellung erneuerbarer Kraftstoffe kann aus (natürlichen) erneuerbaren Energiequellen stammen, zum Beispiel durch Stromgewinnung aus Wind, Sonneneinstrahlung oder Wasserkraft, oder direkt aus Biomasse gewonnen werden. Diese aus Biomasse hergestellten Bio-Fuels treiben Verbrennungsmotoren an. Einige davon können direkt in herkömmlichen Verbrennungsmotoren – in diesem Fall Dieselmotoren – eingesetzt werden. Andere, zum Beispiel Ethanol, benötigen einen eigenen bzw. modifizierten Motor. Die CO2-Einsparung bei Bio-Fuels bewegt sich in der Literatur zwischen 80 und 90 %. Mit nachhaltig erzeugtem Strom können Fahrzeuge oder Maschinen mit elektrischen Antrieben entweder direkt über Kabel oder mit Akkus betrieben werden. Die andere Möglichkeit der erneuerbaren Kraftstoffe sind Kohlenwasserstoffe oder Wasserstoff (H2), die mit elektrischer Energie hergestellt werden. Diese Verfahren werden unter „Power to X“ zusammengefasst.

THG-Emissionen eines Wiener Wohnbaus gegliedert nach Energieträger und Transportmittel

Die THG-Emissionen einer Baustelle werden anhand einer fiktiven Baustelle eines Wiener Wohnbaus mit knapp 200 Wohnungen und einer Bruttogeschoßfläche von 17.000 m² veranschaulicht. Alle Transportemissionen werden durch Diesel betriebene LKWs verursacht. Die 23 % der Emissionen, die den Baustellenaktivitäten zufallen, teilen sich in rund 9 %-Punkte Energieträger Diesel und rund 14 %-Punkte Energieträger Strom. Die Berechnungswerte sind als projektspezifische Potentiale zu verstehen und haben keine allgemeine Gültigkeit.

Szenario 2023 für die Reduktion der THG-Emissionen für die Musterbaustelle Wiener Wohnbau

Die Abbildung zeigt die Auswertung eines realistischen Szenario 2023 der fiktiven Wohnbau-Baustelle nach den Schritten zur Verringerung der THG-Emissionen. Um 38 % werden die THG-Emissionen im ersten Schritt „organisatorische Maßnahmen“ reduziert. Diese setzen sich aus 36 %-Punkten Reduktion der Transportdistanzen und 2 %-Punkten Einsparungen bei Prozessen auf der Baustelle zusammen. Weitere rund 5 % werden im Schritt „technologische Entwicklungen“ eingespart. Durch die „Erzeugung von erneuerbarer Energie (Strom) vor Ort“ werden die THG-Emissionen um zusätzliche 5 % verringert. Der verbleibende Strombedarf wird mit UZ46 „Grüner“ Strom gedeckt. In Summe ergeben diese Maßnahmenschritte 48 % der ursprünglichen (IST) Emissionen. Für diese verbleibenden rund 333 t CO2-eq müssten bei einem Preis von 25 EUR / t CO2-eq rund 8.325 EUR an Kompensation bezahlt werden, um das Ziel der „CO2 neutralen Baustelle“ zu erreichen. Die Berechnungswerte sind als projektspezifische Potentiale zu verstehen und haben keine allgemeine Gültigkeit.

THG-Emissionen eines Wiener Wohnbaus gegliedert nach Prozessen

Die THG-Emissionen einer Baustelle werden anhand einer fiktiven Baustelle eines Wiener Wohnbaus mit knapp 200 Wohnungen und einer Bruttogeschoßfläche von 17.000 m² veranschaulicht. Diese betragen knapp 700.000 kg CO2-eq, wobei rund 300.000 kg CO2-eq (42 %) dem Modul A4 „Transport“ und rund 400.000 kg CO2-eq (58 %) dem Modul A5 „Prozesse vor Ort“ zuzuordnen sind. Die Zuordnung der THG-Emissionen zu den einzelnen Prozessen kann der Abbildung entnommen werden. In Summe entfallen rund 77 % der THG-Emissionen auf Transportaktivitäten. Die Berechnungswerte sind als projektspezifische Potentiale zu verstehen und haben keine allgemeine Gültigkeit.

Schritte zur Verringerung der THG-Emissionen auf Baustellen

Es bedarf einer Reihe von Schritten, um umfangreiche Einsparungen von THG-Emissionen in der Baustellenausführung erzielen zu können. Der Terminus „Verringerung“ wird verwendet, wenn THG-Emissionen durch Vermeidung von (Energie)-Bedarf und -Verbrauch einerseits und durch Verlagerung der (Energie)-Aufbringung von nicht erneuerbarer Energie auf erneuerbare Energie andererseits reduziert werden. Die Schritte zur Verringerung der THG-Emissionen auf Baustellen werden in einem Stufenplan definiert. Der Energieverbrauch wird in den ersten Schritten durch organisatorische Maßnahmen und technologische Entwicklungen gesenkt. Die Verlagerung der Energieaufbringung kann durch Erzeugung erneuerbarer Energie direkt auf der Baustelle oder durch Zukauf erfolgen. Als letzter Schritt dient die Kompensation, um die restlichen Emissionen zu neutralisieren.

EDNA Arbeitsweise

Die Abbildung zeigt sechs farbige Säulen mit Überschriften, die zusammen die strategische Arbeitsweise von EDNA darstellen. Die erste Säule in Grün entspricht der technischen Analyse und enthält zwei Blöcke für Energieverschwendung und Digitalisierung. Diese wiederum beinhalten gemeinsame spezifische Unterthemen, diese sind: Edge Devices und Sensoren, Protokolle und Software, Small Area Network und Upstream Equipment. Die orangefarbene Säule bezieht sich auf die Marktanalyse, und rechts daneben deckt die dunkelgrüne Säule die Themen des Stakeholderengagements ab. Bei der violetten Säule geht es um die Entwicklung von Synergien. Das Ziel dieses Arbeitspfades ist die dunkelgelbe Säule, die sich auf die Unterstützung der Politik bezieht. Die letzte Säule in Rosa bezieht sich auf die Verbreitung von Informationen. Ein grauer Pfeil über den farbigen Säulen zeigt den Verlauf der Arbeit in EDNA an, von links nach rechts, also von der Analyse bis hin zur Politikunterstützung und Verbreitung.

Netzwerkverbundene Geräte

Schematische Übersicht über netzwerkverbundene Geräte und Anwendungsbereiche.

Weltweiter Energieverbrauch netzwerkverbundener Geräte 2010-2030

Die Abbildung zeigt einen Graphen mit den jährlichen Energieverbräuchen netzwerkverbundener Geräte in verschiedenen Betriebsmodi - Netzwerkaktiv und Netzwerkstandby - sowie mit den vorgelagerten Energieverbräuche von Netzwerken und Rechen- und Datenzentren. Bis 2030 wird der gesamte weltweite Energieverbrauch netzwerkverbundener Geräte auf etwa 1.000 TWh/a steigen. Vor allem die gerätebezogenen Energieverbräuche steigen deutlich, wohingegen die vorgelagerten Energieverbräuche etwas sinken und etwa ein Drittel des Energieverbrauchs, der im Zusammenhang mit netzwerkverbundenen Geräten steht, ausmachen. Diese und weitere Grafiken zum Energieverbrauch netzwerkverbundener Geräte lassen sich mit dem EDNA Total Energy Model (Gesamtenergie-Modell) quantifizieren.