Projekt-Bilderpool

Es wurden 151 Einträge gefunden.

Nutzungshinweis: Die Bilder auf dieser Seite stammen aus den Projekten, die im Rahmen der Programme Stadt der Zukunft, Haus der Zukunft und IEA Forschungskooperation entstanden sind. Sie dürfen unter der Creative Commons Lizenz zur nicht-kommerziellen Nutzung unter Namensnennung (CC BY-NC) verwendet werden.

SIRFN Forschungsschwerpunkt: Testen von Stromversorgungssystemen

Im Rahmen des SIRFN Forschungsschwerpunkts Testen von Stromversorgungssystemen „Power System Testing“ bündeln führende internationale Labors ihre Aktivitäten mit dem Anspruch Strategien für das Testen von Systemaspekten digitalisierter, auf erneuerbaren Energien basierender, cyber-physikalischer Energiesysteme zu entwickeln.

SIRFN Partnerschaften mit Stakeholderorganisationen

Als globales Netzwerk arbeitet SIRFN auch intensiv mit Partnern aus weiteren relevanten Netzwerken zusammen. Diese Netzwerke umfassen dabei Forschung- und Entwicklung, Industrie sowie insbesondere auch den Bereich Standardisierung.

SIRFN Forschungsschwerpunkt: Fortgeschrittene Methoden für Labortests

Im Rahmen dieses SIRFN Forschungsschwerpunkts werden fortgeschrittene Methoden für Labortests von Komponenten und elektrischen Energiesystemen durch neuartige Simulationstechnologien wie Power Hardware-in-the-Loop (PHIL), Controller Hardware-in-the-Loop (CHIL) und Co-Simulation ergänzt, deren praktische Erfahrung jedoch begrenzt und noch nicht verbreitet ist. Dazu nutzen die SIRFN-Partnerlabors ihre erstklassige Forschungsinfrastruktur, um Fachwissen auszutauschen und diese neuen Techniken gemeinsam zu bewerten, mit dem Ziel, die Entwicklung zukünftiger Testverfahren im Rahmen internationaler Standards zu etablieren und geben Empfehlungen für die optimale Anwendung dieser Techniken in Laborumgebungen.

Organsation des internationalen Netzwerks für Smart Grids Forschungsinfrastruktur (SIRFN)

Der ISGAN Annex 5 ist zwei Teilbereiche gegliedert, die sich mit der Verbreitung und dem Austausch von Wissen einerseits und andererseits mit der Umsetzung konkreter Projekte zur Weiterentwicklung der Forschungsinfrastruktur beschäftigen. Die inhaltliche Ausrichtung umfasst folgende Forschungsschwerpunkte : - Entwicklung von Testverfahren für die Interoperabilität - Mikronetze - Testverfahren für Stromversorgungssysteme - Fortschrittliche Methoden für Labortests

SIRFN Forschungsschwerpunkt: Verfahren für den Test von fortgeschrittenen Funktionen von Wechselrichtern

Im Rahmen des SIRFN Forschungsschwerpunkts entwickeln die SIRFN Labors Testprotokolle für die Validierung der Interoperabilität von dezentralen Energieressourcen, die in einer integrierten Testplattform (System Validation Platform), zur Implementierung eines harmonisierten, internationalen Zertifizierungsstandards für alle dezentralen Energieressourcen in den Stromnetzen eingesetzt werden kann.

Übersicht der Antriebsformen von Baugeräten

Durch Baugeräte verursachte Emissionen können durch CO2-neutrale Antriebssysteme oder erneuerbare Kraftstoffe reduziert werden. Die Energiequelle zur Gewinnung oder Herstellung erneuerbarer Kraftstoffe kann aus (natürlichen) erneuerbaren Energiequellen stammen, zum Beispiel durch Stromgewinnung aus Wind, Sonneneinstrahlung oder Wasserkraft, oder direkt aus Biomasse gewonnen werden. Diese aus Biomasse hergestellten Bio-Fuels treiben Verbrennungsmotoren an. Einige davon können direkt in herkömmlichen Verbrennungsmotoren – in diesem Fall Dieselmotoren – eingesetzt werden. Andere, zum Beispiel Ethanol, benötigen einen eigenen bzw. modifizierten Motor. Die CO2-Einsparung bei Bio-Fuels bewegt sich in der Literatur zwischen 80 und 90 %. Mit nachhaltig erzeugtem Strom können Fahrzeuge oder Maschinen mit elektrischen Antrieben entweder direkt über Kabel oder mit Akkus betrieben werden. Die andere Möglichkeit der erneuerbaren Kraftstoffe sind Kohlenwasserstoffe oder Wasserstoff (H2), die mit elektrischer Energie hergestellt werden. Diese Verfahren werden unter „Power to X“ zusammengefasst.

THG-Emissionen eines Wiener Wohnbaus gegliedert nach Energieträger und Transportmittel

Die THG-Emissionen einer Baustelle werden anhand einer fiktiven Baustelle eines Wiener Wohnbaus mit knapp 200 Wohnungen und einer Bruttogeschoßfläche von 17.000 m² veranschaulicht. Alle Transportemissionen werden durch Diesel betriebene LKWs verursacht. Die 23 % der Emissionen, die den Baustellenaktivitäten zufallen, teilen sich in rund 9 %-Punkte Energieträger Diesel und rund 14 %-Punkte Energieträger Strom. Die Berechnungswerte sind als projektspezifische Potentiale zu verstehen und haben keine allgemeine Gültigkeit.

Szenario 2023 für die Reduktion der THG-Emissionen für die Musterbaustelle Wiener Wohnbau

Die Abbildung zeigt die Auswertung eines realistischen Szenario 2023 der fiktiven Wohnbau-Baustelle nach den Schritten zur Verringerung der THG-Emissionen. Um 38 % werden die THG-Emissionen im ersten Schritt „organisatorische Maßnahmen“ reduziert. Diese setzen sich aus 36 %-Punkten Reduktion der Transportdistanzen und 2 %-Punkten Einsparungen bei Prozessen auf der Baustelle zusammen. Weitere rund 5 % werden im Schritt „technologische Entwicklungen“ eingespart. Durch die „Erzeugung von erneuerbarer Energie (Strom) vor Ort“ werden die THG-Emissionen um zusätzliche 5 % verringert. Der verbleibende Strombedarf wird mit UZ46 „Grüner“ Strom gedeckt. In Summe ergeben diese Maßnahmenschritte 48 % der ursprünglichen (IST) Emissionen. Für diese verbleibenden rund 333 t CO2-eq müssten bei einem Preis von 25 EUR / t CO2-eq rund 8.325 EUR an Kompensation bezahlt werden, um das Ziel der „CO2 neutralen Baustelle“ zu erreichen. Die Berechnungswerte sind als projektspezifische Potentiale zu verstehen und haben keine allgemeine Gültigkeit.

THG-Emissionen eines Wiener Wohnbaus gegliedert nach Prozessen

Die THG-Emissionen einer Baustelle werden anhand einer fiktiven Baustelle eines Wiener Wohnbaus mit knapp 200 Wohnungen und einer Bruttogeschoßfläche von 17.000 m² veranschaulicht. Diese betragen knapp 700.000 kg CO2-eq, wobei rund 300.000 kg CO2-eq (42 %) dem Modul A4 „Transport“ und rund 400.000 kg CO2-eq (58 %) dem Modul A5 „Prozesse vor Ort“ zuzuordnen sind. Die Zuordnung der THG-Emissionen zu den einzelnen Prozessen kann der Abbildung entnommen werden. In Summe entfallen rund 77 % der THG-Emissionen auf Transportaktivitäten. Die Berechnungswerte sind als projektspezifische Potentiale zu verstehen und haben keine allgemeine Gültigkeit.

Schritte zur Verringerung der THG-Emissionen auf Baustellen

Es bedarf einer Reihe von Schritten, um umfangreiche Einsparungen von THG-Emissionen in der Baustellenausführung erzielen zu können. Der Terminus „Verringerung“ wird verwendet, wenn THG-Emissionen durch Vermeidung von (Energie)-Bedarf und -Verbrauch einerseits und durch Verlagerung der (Energie)-Aufbringung von nicht erneuerbarer Energie auf erneuerbare Energie andererseits reduziert werden. Die Schritte zur Verringerung der THG-Emissionen auf Baustellen werden in einem Stufenplan definiert. Der Energieverbrauch wird in den ersten Schritten durch organisatorische Maßnahmen und technologische Entwicklungen gesenkt. Die Verlagerung der Energieaufbringung kann durch Erzeugung erneuerbarer Energie direkt auf der Baustelle oder durch Zukauf erfolgen. Als letzter Schritt dient die Kompensation, um die restlichen Emissionen zu neutralisieren.

Kombinierte Gebäude- und Anlagensimulation in Echtzeit

Bei einer dynamischen Gebäudesimulation stehen die Zonen (Räume) in Kontakt zu ihrer Umgebung und zu den an sie angrenzenden Bauteilen und den in ihnen sich befindenden Personen, Geräten und Gegenständen. Bei der kombinierten Gebäude- und Anlagensimulation wird zudem die dynamische Wechselwirkung zwischen Gebäude, Anlagentechnik und Regelungstechnik berücksichtigt. Eine Gebäude- und Anlagensimulation, die in Echtzeit an die tatsächlichen Wetterbedingungen und an aktuelle Messdaten aus dem Gebäude angepasst wird, kann dazu beitragen, die Regelung der Gebäudetechnik zu optimieren und damit Energiekosten zu senken und den Nutzerkomfort zu erhöhen.

Gebäude-Energieflexibilität im Quartier

Das Bild zeigt einen Stadtteil, in dem verschiedene Erneuerbare Energieträger zum Energieverteilnetz beitragen. Die Energieflexibilität der Gebäude im Quartier kann genutzt werden, um diese Erneuerbare Energieerzeugung noch besser nutzen und den Verbrauch im Quartier an deren Erzeugung anpassen zu können.

Außenluftansaugung der Passivhauswohnanlage Lodenareal

Das Foto zeigt den Innenhof der Passivhauswohnanlage in Innsbruck mit den Ansaugöffnungen für die kontrollierte Wohnraumlüftung.

Feinstaubpartikel-Emissionen beim Kochen

Die Abbildung zeigt die emittierte Feinstaubpartikelmasse in Abhängigkeit der Partikelgröße für drei verschiedene Kochprozesse.

Beispielhafte Darstellung der Raumluftqualitätsbewertung von Subtask 1

Ein Beispiel für eine Raumluftqualitäts-/ Energiesignatur für Niedrigenergie-Wohngebäude (die hier dargestellten Daten dienen nur der Veranschaulichung und stellen keine reale Situation dar).

Innenraum-Luftschadstoffe in Wohngebäuden

Die Abbildung illustriert die möglichen verschiedenen Schadstoffquellen der Innenraumluft in Wohngebäuden.

Schematische Darstellung des aktiven Überströmprinzips

Diese Abbildung zeigt ein Beispiel wie das Prinzip der aktiven Überströmung in einer Wohneinheit umgesetzt werden kann.

Stadtmorphologie

Unterschiedliche Erscheingungsformen der urbanen Morphologie, abhängig davon, was wir hervorheben (Straßennetz, Block-Inseln, Bauwerke, Grünraum)

Prototyp A - Raumseitig flächenbündiges, nach innen öffnendes Drehfenster

Das Fenster besitzt raumseitig eine Ganzglasoptik und schließt flächenbündig an die Wand an. Es gibt keine hervorspringenden Bedienelemente. Das Fenster kann motorisiert in eine Lüftungsstellung abgestellt werden.

Planungshilfsmittel: Abschätzhilfe für den Schallschutz einer doppelschaligen Wand mit natürlicher Lüftung

Im Zuge des Projektes wurden einfach zu verwendende Planungshilfsmittel erstellt, mit welchen die zu erwartende Performance der doppelschaligen Wand basierend auf den geometrischen und schalltechnischen Basisparametern der Wand ermittelt werden kann.