Suchergebnisse
NaKaReMa - Improving the sustainability of cable sheathing through regional, bio-based and recycled materials
The NaKaReMa project takes a holistic approach to cable sheathing for automotive applications and their improvement in terms of sustainability. To this end, various approaches are being investigated - both regional raw material sources to reduce transport routes and bio-based raw materials to reduce dependence on crude oil. The use of recyclates from cable sheathing to close the cycle through recycling is also being investigated.
Financing Models and Strategies for future Energy Infrastructures (FINAMO)
Contribution to decarbonisation 2050: The development of suitable financing models plays a key role when implementing new energy solutions. (Juli 2019)
SUPERBE - Potential of Superblock-concepts as contribution to planning energy-efficient urban quarters
The exploratory study SUPERBE for the first time looks into the applicability and potential effects of Superblock concepts in an Austrian urban context in order to assess their contribution to energy-oriented urban planning.
vilFIT – Villach Fit 4 Urban Mission
In this project, measures, strategies and the necessary capacity building for achieving climate neutrality in the city of Villach will be advanced. The focus is on social and structural innovations (participation processes, development of pilot initiatives, public relations, etc.) as well as the definition of networks and structures or controlling and monitoring instruments.
DiCYCLE - Reconsidering digital deconstruction, reuse and recycle processes using BIM and Blockchain
DiCYCLE aims at identifying, analysing and mapping current End-of-Life processes in the building industry, as well as optimizing those for digitalization, using BIM, Blockchain and Smart Contracts. The goal is to enable sustainable digital planning, construction and deconstruction workflows for reuse and recycling of building materials and components along the life cycle.
EPSolutely - Development of a circular economy concept in the plastics industry using the example of EPS
In a system-wide cooperation of all relevant actors of the EPS value chain system, concepts, technologies and methods for an EPS circular economy are developed. The integration into an overall concept with optimised logistics and transport systems should enable the transformation of linear EPS value creation systems into a circular economy.
PLAISIR - Planning Innovation: Learning form socially innovative energy projects
PLAISIR analyses social innovation in energy projects located in peripheral region in order to understand their role in energy transition processes and to give recommendations for energy-oriented, endogenous regional development policy.
P³Power - Plug&Play Storage of Photovoltaic Power
The core of the project P³Power is the measurement technology NetDetection, which is able to detect the power consumption of a household from any point, e.g. a regular wall socket. Based on this technology a plug&play powerplant, consisting of photovoltaics and battery pack, is realized. The system is able to guarantee 100% self-consumption within flexible aggregates (from single households to whole communes) without any changes of existing infrastructure. The measurement technology will be implemented into digital hardware, evaluated comprehensively in lab and household environment and subsequently new energy service business models are developed.
The Box - Thermal High Performance Decoupling - Next Generation Thermal Break Technology
The project pursues the overall strategic objective "solution of the problem-inducing heat bridge". For this purpose, the thermal bridging losses should be reduced by the factor of 15 in contrast to the state of the art. The significant increase in efficiency should rely on existing system solutions, but incorporating a new holistic view in terms of construction, geometry and materials.
SolCalc: Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps
Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps
S - House
Innovative Use of Renewable Resources demonstrated by means of an Office and Exhibition Building
Anergy2Plus - Demonstration and expansion of an anergy network as part of a holistic energy concept and plus energy quarter
The overall objective of the project is to pursue and demonstrate a holistic approach to the design, construction and ultimately the use of the residential quarter in the context of energy supply. Especially in the area of thermal energy supply, a project with lighthouse character on the way to a plus-energy quarter is to be created by demonstrating the innovative supply concept based on an anergy network.
Circular Twin - A Digital Ecosystem for the Generation and Evaluation of Circular Digital Twins
By 2030, more than the equivalent of two Earths will be needed to meet the demand for natural resources, therefore a transition to circular systems is essential, especially in the construction industry. The digital "Circular Twin" ecosystem enables the early implementation of circular economy goals as well as end-to-end digitalization in construction utilizing Digital Twins, Generative Design Algorithms and Virtual Reality.
Cool Windows - Windows with shading optimising the trade-off between summery overheating, wintery heat protection and adequate illumination
Windows with their associated components such as sun and glare protection are optimised as a holistic building equipment unit regarding different seasonal requirements in light of the climate crisis. The results serve as a basis for new developments in the window and shading technology in order to provide summery and wintery heat protection as well as adequate natural illumination over the year.
Salzburg:KanS - Salzburg: Climate-neutral city
Salzburg:KanS aligns the vision and climate protection goals of the city of Salzburg with the climate neutrality targets of the province and estimates the sector-specific CO2 reduction contributions until 2030. Based on these contributions, the project develops implementation strategies for the entire city as well as the focus areas of “climate-neutral mobility” and “climate-neutral neighborhoods”.
Joining Cards - Investigation of de-constructable fastening and joining techniques for the development of mono-material interior systems made of cardboard
Strategic examination of cardboard products and paper-based materials for the development of de-constructible interior systems and the definition of building components and their interfaces. The result forms the basis for further research projects in the form of a comprehensive knowledge gain.
EnerPHit-green concept Modernisation of a historic building with application of an aerogel insulation plaster
This demonstration project shows the comprehensive modernization of a historic building within the constraints of a regional protection zone. By using the Aerogel high-performance insulating plaster, a comprehensive energy-efficient building refurbishment had been realized without changing the outer appearance of the façade.
Build4Climate - Demonstration building with a climate room concept at the Innovation Quarter Lavanttal in Carinthia
Near the Wörthersee in Carinthia a modern open-space research and office building with flexible use is being built on the site of Lakeside Science & Technology Park GmbH. The innovative building will be implemented as a frontrunner with a 'climate room' concept based on thermal component activation and extensive use of renewable energy sources.
Energy-Sponge: The Building as an Energy-Sponge - Electricity In - Heat Out
Innovative, dynamic control concepts had been developed which enable (air) heat pumps in combination with PV- or renewable grid electricity to use the building mass of a multi-familiy house as heat storage. User acceptance had been evaluated and possible business models had been developed.
ReTarget - Re-manufacturing and re-purposing of high-quality sputter materials
The project objective is to reduce the energy input in the production of sputtering targets by at least 20 % by direct re-manufacturing of used, precious metal targets. In addition, the utilization rate will be increased from an average of 20-30 % to 70-80 % through a direct re-purpose approach, as well as by optimizing the sputtering process. This will allow a significant reduction of the footprint of the sputtering process.