Suchergebnisse
RAARA - Residential Area Augmented Reality Acoustics
Populations with high exposure to noise emissions will generally agree: Noise means trouble. The aim of project RAARA is to develop a simple, intuitive albeit accurate method for reducing noise imissions in urban areas. This method involves placing a noise-source into its planned real-world destination prior to actual installation, by means of augmented reality. The ensuing sound-imissions are then made tangible by means of sound effects and coloured visualizations. This exceptional approach will facilitate planning for heating and cooling devices and thus reduce noise pollution in urban areas. This, in turn, can contribute to an increase in societal acceptance and investment in renewable energy.
M-DAB - Digitise, analyse and sustainably manage the city's material resources
The research project investigates how digital technologies can support us in determining the existing and future material resources in construction qualitatively (building materials and their recycling) and quantitatively (quantities of building materials).
BTTAB - Broad-based testing of energy-efficient demonstration buildings with thermally activated building components
Buildings with thermal building component activation that have not yet been researched in as many federal states and application categories as possible will be monitored, which will include operating data as well as the experiences of those involved. The aim of this study is to take a general look at the various applications of the thermal building component activation technology and to evaluate and compare the pilot projects with the help of suitable evaluation criteria.
NaNu3 - Parametric Planning for a Sustainable Roof (Blue, Grey and Green)
Demonstration of the feasibility and validation of a parametric model that can evaluate the practical and financial feasibility of the combined use of roof areas as well as its microclimate and environmental effectiveness at an early planning stage.
Innovation lab act4energy
The Innovation Lab act4energy is set up as an innovation laboratory project. Its focus is to solve the problems of renewable energies integration with a focus on photovoltaic power paired with local consumption, linked to the the high fluctuation of renewable energies.
VAMOS - Casement windows with vacuum glazing: Performance-Monitoring for Building retrofit
Knowledge consolidation of the exploratory project VIG_SYS_RENO; This project focused on the application of vacuum glass in existing casement windows for purposes of energetic performance improvement of buildings. Expected results include new insights about and a guideline for the application and utilization of vacuum glass products in existing window systems.
NETSE - User orientated development of technologies and services for energy communities
In the NETSE project the basics for the implementation of energy communities are developed. This includes the relevant technical equipment and interfaces, the development of a platform for the operation of an energy community as well as tools for the optimization of the technical setup and the operation of energy communities.
INReS - Integration of sustainable stormwater management tools into planning execution and management software (BIM)
Exploration to prepare and evaluate the applicability of an interactive web application to recommend appropriate stormwater management measures for existing and new buildings that allows for (1) BIM compatibility for object-based implementation and (2) simplified application in the form of the stormwater toolbox.
Exploration of window systems with innovative glass - especially vacuum insulating glass - for building renovation
Exploration of the use of the first fabricable highly insulating vacuum glazing (VG) for highly efficient window systems specifically for the renovation of existing buildings via Verification of the availability and performance of Vacuum Glazing VG worldwide, concepts for structural optimization and thermal simulations of integrated systems, investigation of typical applications and market potential studies and identification of achievable energy savings for single buildings and settlements.
Urban Mining - Energy and resource savings due to urban mining
The use of natural resources in long-lived products and buildings has led to the build-up of enormous urban material stocks. The present project analyses the potential of these urban mines to increase the resource efficiency of modern cities.
PowerShade - Development of electricity-generating shading solutions for energy-flexible buildings in urban space
The main goal of the cooperative R&D project "PowerShade" was the development of low-cost and universally usable electricity-generating shading solutions for energy-flexible buildings in urban space.
Piezo-Klett: Development of piezoelectric hook-and-loop application for the energy supply of active sensor technology in the building industry
The present project considered buildings, parts of buildings and their joints (component nodes) as energy generators by using the hook-and-loop fastener in combination with the piezoelectric effect to perform a so-called energy harvesting.
mAIntenance - Investigation of AI supported maintenance and energy management
Optimized & reliable operation of Heating, Ventilation and Air Conditioning (HVAC) systems in terms of maintenance and energy management, using predictive, data-based & self-learning error detection. Conceptual design and prototype implementation of an AI (Artificial Intelligence) tool for automated data analysis and recommendations for technical building operators.
URBAN STRAW - Fire protection conditioning of blow-in straw insulation material and its structural application for urban building classes 4 and 5
Investigation and development of fire protection conditioning of chopped straw blow-in insulation based on biogenic flame-retardants of similar building materials and their application methods. Use of the material as external thermal insulation in material-reduced prefab timber construction elements for urban building classes 4 and 5 up to 6 storeys.
CO2-Demobau - Exploration of the feasibility of carbon-neutral model construction sites
By highlighting green innovations, networking with stakeholders in the construction industry and applying the findings of the previous study "CO2 neutrale Baustelle", the foundation is set for future carbon-neutral model construction sites. These construction sites will serve as best-practice examples in the fields of contracting, construction operations organization and technology.
FIVA - Window prototypes with integrated vacuum glazing
This project targets the further development of windows with integrated vacuum glazing. Such glass products regularly feature a very low Ug-value, and their dimension is in comparison to insulation glass thin and light. As such, these products offer a new alternative for highly-insulating window constructions, and thus also for energy-efficiency measures in buildings. The project is based on the findings of a previous exploratory project (MOTIVE) and focuses on the construction of functional prototypes of vacuum glass windows together with business partners.
AFOM - Automatic failure and optimisation analysis by data-acquisition
In the project, methods will be developed for analysing measured value curves to detect changes in operation or failures in the system. By integrating BIM data of buildings, corresponding models will be generated to validate the heating, ventilation, and air conditioning (HVAC)-networks, which will be used for analysis.
CO2 neuBau - The CO2-neutral Construction Site: a Contribution to the Climate Protection by the Austrian Construction Industry
Identification of all direct and indirect CO2, respectively, GHG emissions generated at construction sites. Analysis of the framework conditions and technologies towards demonstrating the options for their control. In parallel, added values, such as cost-benefit advantages of a CO2-neutral construction site, were outlined and quantified.
Stanz+ - An innovative, energy-flexible plus-energy district - the centre of the village Stanz
Stanz+ is working on the implementation of an energy strategy for structurally weak municipalities with specific measures for revitalisation and re-densification in the building stock as well as the integration of renewable energy sources in the municipality of Stanz im Mürztal (Styria). The project includes multipliable approaches towards energy autonomy, hybrid use of energy networks for flexible usage and an energetic revitalisation of the village centre with the involvement of users in the "Rural Pioneers Community" for the usage of energy services.
BIMBestand - BIM-based management of existing buildings
The objective of this research project was to develop information requirements and process descriptions for the application of BIM models related to building services in facility management and to demonstrate the lifecycle-oriented use of these models in an open BIM environment. For this purpose, software solutions for the use of IFC in the open-source platform SIMULTAN and building management software were developed and evaluated on the basis of four typical use cases.