Suchergebnisse
AFOM - Automatic failure and optimisation analysis by data-acquisition
In the project, methods will be developed for analysing measured value curves to detect changes in operation or failures in the system. By integrating BIM data of buildings, corresponding models will be generated to validate the heating, ventilation, and air conditioning (HVAC)-networks, which will be used for analysis.
mAIntenance - Investigation of AI supported maintenance and energy management
Optimized & reliable operation of Heating, Ventilation and Air Conditioning (HVAC) systems in terms of maintenance and energy management, using predictive, data-based & self-learning error detection. Conceptual design and prototype implementation of an AI (Artificial Intelligence) tool for automated data analysis and recommendations for technical building operators.
ASAP Kick Off - Weltraum ist für alle da!
21. September 2022
Hotel Savoyen Vienna Rennweg 16, 1030 Wien, AT
Anlässlich der Herbstausschreibung des Österreichischen Weltraumprogramms ASAP findet diese Informations- und Vernetzungsveranstaltung statt. Ziel der Veranstaltung ist die Vernetzung der Weltraum-Community mit Anwendern und Bedarfsträgern aus den Sektoren Energie, Mobiltät, Kreislaufwirtschaft und klimaneutrale Stadt.
New European Bauhaus: Jour Fixe Austria
9. July 2024
Architekturzentrum Wien (AzW), Museumsplatz 1, 1070 Vienna
The event focussed on the exchange of national and international NEB activities and positions as well as networking among the participants.
International Sustainable Energy Conference – ISEC 2026
14. –16. April 2026
Graz
Over the three conference days, ISEC 2026 will focus on various thematic areas, such as the "Role of the Heating Sector and Energy Efficiency" in an interconnected sustainable energy system, as well as "Research and Innovation in Energy Transition, Circular Economy, and Climate-Neutral Cities".
KRAISBAU - Development of AI tools for a transformation to a circular economy along the life cycle of buildings
The BMK lead project KRAISBAU is a collaboration of 32 partners for the realization of a sustainable and circular construction industry. The project focuses on the development and implementation of AI-supported solutions in circular construction along the entire value chain. The knowledge gained is disseminated through factsheets, roadmaps and training courses with the aim of establishing scalable and efficient approaches for existing buildings.
greening UP! Sustainable green maintenance, maintenance, maintenance of vertical greenery including legal aspects
Based on extensive surveys and analyses of existing vertical building greenery in outdoor areas (floor and system-bound façade greening) and vertical interior greenery, the project developed tailor-made green care, maintenance and repair concepts and addresses legal aspects. The "greening UP!" Knowledge pool with concrete recommendations and clearly presented findings as well as the conception of a digital tool for the "First Green Aid" complete the project.
fit4power2heat
The integration of heat pumps can increase the cost effectiveness of existing heating networks and counter the high costs for the expansion of power grids at the same time. Aim of the project is to develop innovative business models for small and medium municipal heating networks with focus on synergies between heat and power market. Main focus is a heat pump pooling for several heat grids.
BIMBestand - BIM-based management of existing buildings
The objective of this research project was to develop information requirements and process descriptions for the application of BIM models related to building services in facility management and to demonstrate the lifecycle-oriented use of these models in an open BIM environment. For this purpose, software solutions for the use of IFC in the open-source platform SIMULTAN and building management software were developed and evaluated on the basis of four typical use cases.
PlusIQ - Agricultural Photovoltaics: Integration as a Path to Plus-Energy-Quarters
This project examines opportunities, potentials and requirements of/for Agrophotovoltaic systems. Thereby, an interdisciplinary study will be conducted that integrates the major aspects of such systems holistically and from an integrative perspective. The complex interdependencies between the different aspects will be explored and described via a case study. Potential approaches toward realization will be studied and subjected to a comprehensive SWOT-analysis.
Anergy2Plus - Demonstration and expansion of an anergy network as part of a holistic energy concept and plus energy quarter
The overall objective of the project is to pursue and demonstrate a holistic approach to the design, construction and ultimately the use of the residential quarter in the context of energy supply. Especially in the area of thermal energy supply, a project with lighthouse character on the way to a plus-energy quarter is to be created by demonstrating the innovative supply concept based on an anergy network.
Move2Grid – Implementation of regional energy-supply-concepts by hybrid coupling
Based on the results of the national-funded exploratory projects called “Smart Exergy Leoben”, and “Energy Sponge Bruck”, the present implementation project aims at analysing how local, renewable resources support the supply of electric mobility in Leoben in the long term and to integrate it into the municipal distribution grid in a good economic sense.
The Box - Thermal High Performance Decoupling - Next Generation Thermal Break Technology
The project pursues the overall strategic objective "solution of the problem-inducing heat bridge". For this purpose, the thermal bridging losses should be reduced by the factor of 15 in contrast to the state of the art. The significant increase in efficiency should rely on existing system solutions, but incorporating a new holistic view in terms of construction, geometry and materials.
BIMSavesEnergy - BIM-based planning-methods for the assurance of energy-efficiency in the building process
The Building Information Model (BIM) brings about fundamental changes in the planning and construction of buildings, as the common base makes it possible to work closely together across disciplines in construction projects. In this project, BIM-based planning methods were developed, which make the influence of planning decisions on energy efficiency quantifiable and controllable in the management process.
SOFC4City - SOFC-waste heat utilization for buildings and industry
In this project the application of a solid oxide fuel cell (SOFC) for energy supply (heat and power) of urban areas will be investigated. Due to the high temperature level of the produced heat it would be possible to use this heat for the energy supply of different heat and power consumers (residential buildings, industrial plants, etc.). One aim is to provide the SOFC-heat at several temperature levels in order to establish the advantages of the fuel cell. On the one hand the legal and market-based conditions will be evaluated, on the other hand the technological feasibility will be scoured by the use of CFD-simulation of the heat production.
ThermoCluster - Heat generation from infrastructure projects and integration into decentralised low-temperature heating and cooling networks for plus-energy districts
Integrative assessment of the geothermal potential of the Brenner base tunnel and the northern portal area, and the subsequent distribution of the heat generated from these sources to the end-consumer in potential plus-energy districts of the city of Innsbruck.
REGOreal - 100% Renewable Energy Region: Local Energy Common Good Economy in real laboratories for networked energy and mobility cells
In REGOreal, the exploration for a 100% renewable energy region in the area of Retz-Horn-Krems-Tulln (Lower Austria) and Mallnitz (Ktn) is taking place. There are four focus topics: 100 Renewable Energy Communities (REC), 1.000 building renovations, 10.000 energy exporters (in the sense of employees who carry the approach into their private environment) and 100 Mio. km of sustainable mobility with extensive use of IT for the development of local integrated energy systems (IES) to integrate a colorful mix of different actors and objects.
DeLight Monitoring - Demo light Impact-Monitoring and metrological investigation of energy-efficient buildings
The Project consists of the metrological examination of eleven innovative buildings in terms of energy consumption and user comfort. In addition, building constructors and operators as well as the public are sensitized to the subject of energy-related optimization of building operation. Also, the potentials of energy-related optimization of building operation are shown.
SURO - The urban underground as mine? Potential of secondary resources in subsurface infrastructure systems
Feasibility of a resource cadaster to inventorize, characterize and locate material stocks in subsurface infrastructure networks. The results are used for the economic assessment of secondary resource potentials.
Smart & Urban Tree - Exploring integrative possibilities of structures for urban shading
The project "Smart & Urban Tree" explores large-scale artificial structures, which may serve as a supplementary alternative to other greening measures, such as trees and facade greenery, in dense urban contexts, where traditional concepts cannot be applied in a satisfactory manner. Such structures offer a wide-range of to-be integrated functions and can contribute to mitigation of urban heat islands.