Suchergebnisse
IEA HPT Annex: Industrial High-Temperature Heat Pumps
High-temperature heat pumps are key elements in the decarbonisation of industrial process heat. In this project, existing activities to promote the market ramp-up of this technology will be continued. An existing technology database of manufacturers, their close-to-market or market-available products and demonstration projects will be continued. Moreover, recommendations for sector-specific solutions and training materials will be developed and disseminated to relevant target groups.
IEA Heat Pumping Technologies (HPT)
The IEA Heat Pump Technologies programme develops and disseminates objective and balanced information on heat pumps, refrigeration technologies and air conditioning with the aim of exploiting the environmentally relevant and energetic potential of these technologies. This programme includes joint research projects, workshops, conferences and an information service (IEA Heat Pump Centre).
IEA HPT Annex 58: High-Temperature Heat Pumps
Industrial heat pumps, especially high temperature heat pumps with useful temperatures higher than 100°C, are a central element in the future energy system. In order to increase the application of high temperature heat pumps in industry, this project will provide an overview of the technological possibilities up to the procurement process of high temperature heat pumps. This should increase the understanding of the technology and its potential and reduce existing market barriers.
IEA HPT Annex 54: Heat pump systems with low GWP refrigerants
The aim of the project was to investigate the current situation in the area of refrigerants with a low global warming potential ("low-GWP"). The focus of the national project lies on the current refrigerant application situation and on an outlook until 2030 on the availability of components and systems.
IEA HPP Annex 47: Heat Pumps in District Heating and Cooling Systems
A significant use of alternative heat sources with the help of district heating and cooling networks is a major challenge for a sustainable energy supply. In times of increasing shares of fluctuating producers such as PV and wind energy, the relevance of heat pumps increases. Within the framework of the IEA HPT Annex 47, potentials and barriers for the integration of heat pumps in DHC networks were analyzed.
IEA HPT Annex 61: Heat Pumps in Positive Energy Districts
IEA HPT Annex 61 evaluates the role of heat pumps (HP) in positive energy districts (PED). Efficiency potentials of the electric and thermal energy of districts that can be unlocked with the use of HPs are evaluated in order to reach a positive energy balance. This refers to both, upgrade of waste heat and simultaneous generation of different energy use in buildings (space heating, DHW, space cooling/dehumidification) and includes self-consumption of on-site renewable electricity generation.
IEA HPT Annex 48: Industrial Heat Pumps, Second Phase
Industrial heat pumps enable the use of waste heat and increase the energy efficiency of industrial processes. The aim of this project was to provide comprehensive information on the successful application of industrial heat pumps and thus contribute to the further dissemination of this technology.
IEA HPT Annex 60: Retrofitting Heat Pump Systems in Large Non-domestic Buildings
Lack of knowledge about retrofit options with heat pumps currently hinders the widespread use of the technology in non-residential buildings. In this project, easy-to-use, accessible recommendations for techno-economically optimised planning / design of heat pump applications in hospitals, shopping centres, industrial buildings, educational institutions, and museums will be developed and communicated to relevant target groups in the form of guidelines and training courses.
IEA HPT Task 41: Cold Climate Heat Pumps
The aim was to increase the efficiency of outdoor air heat pumps in cold climates in locations with low outside temperatures of up to -25°C. Newly developed heat exchanger concepts were tested and optimized regarding their icing behaviour. Different circuit modifications were modelled and simulation studies for low ambient temperatures were carried out.
IEA HPP Annex 33: Compact heat exchangers for heat pumping equipment
International cooperation aiming at widening the use of compact heat exchangers in heat pumping equipment. The goal of this project is to identify compact heat exchangers, either existing or under development, that may be applied in heat pumping equipment such as compression or absorption heat pumps.
IEA HPT Annex 43: Fuel Driven Sorption Heat Pumps
The project aimed at investigating the performance and market potential of gas-fired absorption heat pumps (AHPs) in domestic and small commercial or industrial buildings or applications. Selected processes were simulated for various types of buildings in order to calculate the energetic, ecological and economical potential of this technology. The results were compared with monitoring data of a gas-fired AHP system. In addition, a market survey including market barriers for gas-fired AHPs in Austria was conducted and a list of market supporting measures was compiled.
IEA HPT Annex 50: Heat Pumps in Multi-Family Buildings for Space Heating and DHW
The project aims at demonstrating the potentials of heat pump technology for the energy supply of multi-family houses (MFH) and to contribute to the elimination of existing market barriers. Concepts and innovative technology options for heat pumps in MFH will be investigated in detail by means of simulations and experiments. The findings and results will be presented in international expert meetings and disseminated among national heat pump manufacturers, installers and planners.
IEA HPT Annex 59: Heat Pumps for Drying Processes
Drying processes are highly energy-intensive and widespread in industry and commerce as well as in households in various forms. In this project, the potential for energy savings in drying processes in various applications will be investigated, which can be tapped through the use of heat pumps and made available to the relevant target groups in the form of guidelines, data, etc.
IEA HPT Annex 49: Design and integration of heat pumps for nZEB
A dominating concept to reach a nearly Zero Energy Building (nZEB) is the combination of solar PV systems and heat pumps. The extended scope of the Annex 49 regards the balance of single buildings and groups of buildings/neighbourhoods, a thorough investigation of heat pump integration options for nZEBs and nZE neighbourhoods by means of monitoring and simulation as well as the design and control optimization for heat pumps in nZEB and the integration into energy systems.
IEA Cities Task 2: Data for Urban Energy Planning (Working period 2025 - 2029)
Cities consume 60–80% of the globally produced energy and play a central role in the energy transition. However, they face challenges such as insufficient data, missing methodologies, and legal barriers. The project offers practical solutions, best practice examples, and tools for urban energy planning. The focus is on international knowledge exchange, improved data access and quality, as well as collaboration with multipliers and municipalities.
Decarbonization of Cities and Communities (Cities TCP)
The Cities TCP is a joint international effort that aims to accelerate the decarbonization in cities by providing a communication platform for relevant expertise of all IEA bodies to the local scale including cities, financing institutions, utilities, service providers and building constructors. Vice-versa, the platform generates evidence-based research questions of cities needs for IEA TCPs.
Working Party on Industrial Decarbonisation (WPID)
The aim of the Working Party on Industrial Decarbonisation WPID is to provide a platform with a focus on key aspects towards accelerating industrial decarbonisation. The initial focus area of the WPID will be on definitions related to what constitutes climate friendly production standards in heavy industry and how these standards can support successful decarbonisation policies. Thus WPID is working together with IEA members as well as relevant globale private and public stakeholder and supports the IEA office in reporting, benchmarking and foresight.
IEA Wind Task 41: Enabling Wind to Contribute to a Distributed Energy Future (Working period 2019 - 2023)
IEA Wind Task 41 aims to create framework conditions for decentralised small and medium-sized wind turbines in order to establish them as a competitive and reliable technology for decentralised energy generation. A strategic focus in the pursuit of this goal is the revision of the IEC standard for wind turbines, taking into account the latest research results.
IEA Wind Task 27: Small Wind Turbines in High Turbulence Sites
To ensure safety, reliability and productivity of small wind turbines (SWT) the experts of IEA Wind Task 27 developed a standard consumer label for small wind turbines. Since 2013 Task 27 is focussing on small wind turbines in high turbulence sites. By actively participating in the IEA Implementing Agreement Wind Energy Task 27, Austria’s stakeholders will become participants in the global small wind network. The establishment of a national working group as well as the organisation of an annual small wind conference in Austria will foster a durable collaboration and provide new impetus to the Austrian Small Wind Community.
IEA Wind Task 19: Wind Energy in Cold Climates (working period 2019 - 2021)
The project deals with the challenges of wind power utilisation in icing conditions and provides a strong opportunity to generate new knowledge by global networking. Energiewerkstatt leads a subtask in the field of icefall risk and works on deriving rules of thumb for the risk assessment of the ice throw risk of turbines in operation during icing conditions.