Suchergebnisse
IEA AMF Task EATS: Exhaust gas aftertreatment systems (working period 2024 - 2027)
Internal combustion engines with renewable fuels are indispensable for the decarbonization of the hard-to-electrify industrial and transport sectors. The AMF TCP EATS Task is investigating effective exhaust aftertreatment technologies to achieve air quality comparable to electrified applications. Emissions are being analysed, suitable measurement methods identified and guidelines for limiting emissions developed.
IEA IETS Annex 18: Digitalization, artificial intelligence and related technologies for energy efficiency and reduction of GHG emissions in industry (Working period 2020 - 2023)
The work in Task 18 enables the exchange of experience and knowledge between industry and research institutions from different countries. Through this cooperation best practices are identified and disseminated to promote the implementation of energy-efficient technologies in industry. In the medium and long-term, this contributes to reduce energy consumption and greenhouse gas emissions of industry.
IEA ES Task 44: Power-to-Heat and Heat integrated Carnot Batteries for Zero-Carbon (industrial) heat and Power supply
The rise of renewable energy causes fluctuating energy production. The electrification of heat supply further challenges the electricity grid. Coupling electricity and heating with thermal storage helps to strengthen grid resilience and ensures stable energy supply. This project identifies and evaluates heat-integrated Carnot battery concepts to store thermal and electrical energy and supply electricity and thermal energy on demand.
IEA ES Annex 50: Prefab Systems for Low Energy/High Comfort Building Renewal
Development of integrated concepts for multi-storey buildings, which enable renovations of buildings with high energy efficiency at good user acceptance during the realisation phase as well as afterwards (comfort, affordability). Relevant components: integrated solutions of roof and façade with high rate of pre-fabrication, the possibility of integrating the energy façade/roofs and energy distribution and supply.
IEA ES Annex 49: Low Exergy Systems for High-Performance Buildings and Communities
The objective of Annex 49 is the development of approaches for reducing the exergy demand of buildings, so as to reduce the CO2 emissions of the building stock and support structures for sustainable and reliable energy systems in the building sector. To achieve the objectives of Annex 49, the following activities have been carried out:Application of exergy analysis and providing tools, guidelines, best-practice examples and background information for planners and decision makers in the fields of construction, energy and politics Support of cost-efficient low-energy/exergy measures for renovation and new building taking into account both the residential and the service sector Promotion of exergy-related performance analysis of buildings, particularly from the perspectives of communities / regions
IEA ES Task 45: Accelerating the uptake of Large Thermal Energy Storages
The aim of Task 45 is to accelerate the market launch of large-scale heat storage systems. For this purpose, numerical simulation techniques and material measurement techniques are to be improved and a material database expanded. In addition, a standardized evaluation and communication basis will be developed leading to a method for yield assurance. The methods and findings will be disseminated specifically to municipal utilities, planners and operators of district heating systems as well as decision-makers.
User-Centred Energy Systems (UsersTCP)
The UsersTCP provides evidence from socio-technical research on the design, social acceptance and usability of clean energy technologies. Users play a central role within energy systems. The findings will support political decisions for a clean, efficient and safe energy system.
Decarbonization of Cities and Communities (Cities TCP)
The Cities TCP is a joint international effort that aims to accelerate the decarbonization in cities by providing a communication platform for relevant expertise of all IEA bodies to the local scale including cities, financing institutions, utilities, service providers and building constructors. Vice-versa, the platform generates evidence-based research questions of cities needs for IEA TCPs.
IEA ES Task 43: Storage for renewables and flexibility through standardized use of building mass
Thermal building mass activation uses building masses to condition interior spaces, but can also function as energy storage through targeted overheating/undercooling. This storage potential can be used for local and grid-connected renewable thermal and electrical energy (Power2Heat). The project develops new content on the construction, control and business models of such storages and disseminates it as guidelines, data and on the basis of best-practice objects that have been implemented.
IEA ES Task 36: Carnot Batteries
Carnot Batteries are an emerging technology for the inexpensive and site-independent storage of electric energy at medium to large scale (> 1.000 MWh). The technology transforms electricity into thermal energy, stores it in inexpensive media such as water or molten salt and transforms the thermal energy back to electricity as required. Carnot Batteries have the potential to solve the global storage problem of renewable electricity in a more economic and ecologic way than conventional batteries.
IEA ES Task 41: Economics of Energy Storage
What is the value of energy storage and how can it be quantified? How can the benefits and value of energy storage be translated into promising business models? The Task will conduct a coordinated methodological assessment of the economic viability of energy storage (electrical, thermal, and chemical) in applications relevant to the energy system. This will be used to derive preferred conditions for energy storage configurations.
IEA EV Task 52: EVs and Circularity
Electric vehicles have specific challenges to reach circularity, which must be identified and solved adequately. Circularity issues are relevant in all phases of the life cycle – production, use and end of life – so circularity is strongly linked to Life Cycle Assessment (LCA) of electric vehicles. Austria leads this task and is responsible for the scientific assessment of circularity in LCA. Relevant case studies for the Austrian industry are analysed and the national R&D demand is identified.
IEA EBC Annex 67: Energy Flexible Buildings (working period 2015 - 2019)
The project increased the knowledge on building Energy Flexibility and the regarding potential buildings can provide to energy grids. The critical aspects and possible solutions to utilize the Energy Flexibility that buildings can provide were identified and a report of the “Principles of Energy Flexible Buildings” will be published in 2019.
IEA HPP Annex 47: Heat Pumps in District Heating and Cooling Systems
A significant use of alternative heat sources with the help of district heating and cooling networks is a major challenge for a sustainable energy supply. In times of increasing shares of fluctuating producers such as PV and wind energy, the relevance of heat pumps increases. Within the framework of the IEA HPT Annex 47, potentials and barriers for the integration of heat pumps in DHC networks were analyzed.
IEA EBC Annex 70: Building Energy Epidemiology: Analysis of Real Building Energy Use at Scale
Within the framework of the IEA-EBC Annex 70, causes of deviations between calculated and actual energy consumption in buildings were empirically investigated and requirements for data quality, characteristics and security were developed. Furthermore, recommendations were developed regarding the use of internationally uniform standards and methods for data collection, processing and evaluation.
IEA EBC Annex 66: Definition and Simulation of Occupant Behavior in Buildings
Given the considerable implications of occupants' presence and behavior for buildings’ performance, IEA EBC Annex 66 aims to set up a standard occupant behavior definition platform, establish a quantitative simulation methodology to model occupant behavior in buildings, and understand the influence of occupant behavior on building energy use and the indoor environment.
IEA EBC Annex 56 – Cost Effective Energy and Carbon Emission Optimization in Building Renovation
The objective of the IEA EBC Annex 56 project was to develop a methodology for cost effective energy and carbon emissions optimization in building renovation. Within the frame of the project this methodology was developed and furthermore also innovative renovation projects were collected and analyzed, which should perform as best practice examples.
IEA EBC Annex 75: Cost-effective Building Renovation at District Level Combining Energy Efficiency & Renewables
For the conversion of existing buildings into low(st) energy buildings with low greenhouse gas emissions, it is important to know which strategies are most cost-effective to reduce emissions and primary energy consumption of the buildings. In particular, it is important to find the right balance between energy efficiency measures and renewable energy measures. This question is addressed in this project.
IEA EBC Annex 72: Assessing life cycle related environmental impacts caused by buildings
The construction sector has great potential to reduce its energy consumption and the associated environmental impacts. The IEA EBC Annex 72 therefore focuses on the harmonization of methods for the assessment of construction-specific and operational environmental impacts (primary energy requirements, greenhouse gas emissions and other indicators) throughout the life cycle of buildings.
IEA EBC Annex 71: Building Energy Performance Assessment Based on In-situ Measurements
The requirements on building envelope and on building technology are steadily increasing. There is a lack of measurement and analysis methods to control the quality of the built implementation and to optimize the building operation. This project developed a methodological basis to enable an in-situ evaluation of the actual energy performance and building operation. For this purpose, it investigated methods to generate data-driven building models favouring the use of already available on-board data.