Suchergebnisse
TheSIS - Thermal renovation with internal insulation systems - investigation and development of moisture-proof solutions
Development of innovative solutions for the retrofit of the building envelope with internal insulation with a focus on the hygrothermal optimization of a moisture-adaptive vapor retarder in form of a paint coating. As a result, the moisture hazard related to the implementation of internal insulation systems is reduced and the energetic, comfort-related and economic advantages are made available.
Lahof/Lanserhofsiedlung - Path to Zero CO2 - climate-neutral demonstration building in relation to the neighbourhood
The aim is to develop and implement an innovative, climate-neutral neighbourhood concept with various sustainable energy and building technology components. A central element here is the climate-neutral demonstration building in timber construction. This building is equipped with thermal component activation in solid wood and combines innovative energy concepts such as wastewater heat recovery, large photovoltaic systems and a hydrogen system for seasonal energy storage.
DigiHemp/ Digital technologies for quality assurance and performance enhancement of hemp-based building materials
Development of digital methods for describing, predicting and optimizing the thermal/mechanical properties of composite materials made from bio-based raw materials. Taking into account the complex material morphology as well as the properties of the components for the prediction of building material properties, the overall goal of increasing the use of bio-based building materials shall be achieved.
Diverse DH Pöchlarn - Diversification strategies for a sector-coupled district heating supply in the municipality of Pöchlarn
The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Pöchlarn so that the defossilization path can be taken further.
AnergieLeichtGemacht - Development of Scalable Implementation Models for Geothermal Anergy Networks to Decarbonize the Building Sector
The project develops standardized technical, organizational, and financial implementation models for anergy networks to enable sustainable heating solutions in cities and municipalities. By identifying suitable settlement typologies, analyzing existing framework conditions, and engaging stakeholders, scalable solutions are created. The goal is to reduce planning and implementation barriers and facilitate investments in local anergy networks.
TEA-PUMP – Techno-economic Analysis of Thermoelectric Modules for Efficiency and Performance Enhancement in Heat Pumps for Residential Buildings
The TEA-Pump project explores the innovative use of thermoelectric elements (TEM) in compression heat pumps to enhance their efficiency and performance. Through a comprehensive techno-economic analysis, promising heat pump (HP) configurations for use in urban multi-family housing are identified. The project makes a significant contribution to the decarbonization of heating and cooling supply and supports the development of climate-neutral cities through energy-efficient, future-oriented heat pump technologies.
TOPS – Topology-optimised reinforced concrete slabs with digital formwork and reinforcement
The TOPS project is investigating material-efficient ribbed concrete slabs, which save up to 50% of the concrete used in conventional flat slabs by topology-optimisation. A 'file-to-factory' process enables the automated production of formwork and reinforcement using digital technologies. The construction method reduces CO₂ emissions and contributes to the decarbonisation of the construction industry.
Abwärme_4_Kapfenberg - 100 % industrielle Abwärmeauskopplung Kapfenberg
The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Kapfenberg to foster the defossilization path.
V-Form – Manufacturing unreinforced vaulted concrete floors with variable pneumatic formworks
V-Form is working on the development of vaulted concrete floors in terms of structural design and building physics, as well as on a new formwork system. Thanks to the efficient shell construction, around 70% CO2eq-emissions can be saved compared to reinforced concrete flat slabs. The reusable and variable pneumatic formwork system aims to enable the economical production of the double-curved concrete shells.
Favorite Facades Reuse
The exploratory project "Favorite Facade ReUse" has set itself the goal of renovating and thermally upgrading buildings with curtain facades with a maximum proportion of reuse and the greatest possible protection of the residents. The authenticity of the building is preserved, and CO2 emissions are minimized.
BIOCHARm - Assessing the Potential of Biochar in Construction as a Contribution to Climate Neutrality
The project investigates the potential and limits of the use of biochar in the Austrian construction sector. The participating organisations gain valuable insights into the availability and suitability of biogenic material flows, the possible uses of biochar and the possibility of storing atmospheric carbon in the construction sector.
BIPV-Booster - Game changer for façade-integrated PV systems: Development of proof-free constructions regarding fire protection
The central result of the project will be the development of a catalogue of “proof-free constructions” with regard to fire protection for façade-integrated photovoltaic systems, particularly for the more difficult case of high-rise buildings. These constructions will be defined in the project and tested in fire tests. The fire tests are to be supplemented by electrical and material-related module tests before and after the fire tests.
AI4FM - Artificial Intelligence for Facility Management
AI-based anomaly and fault detection in buildings. Digital twins of buildings with simulation models for testing and optimizing rule-based fault detection methods. Mining of the recorded time-series data from existing Building Management Systems to train Machine Learning models for fault detection.
GreenGEO - Data-based integration of climate change adaptation measures into spatial planning
Green and blue infrastructure (GBI) is a key instrument in the fight against climate change. Nevertheless, deciding where and in what form it should be used most effectively remains a challenge in spatial planning practice. The development of a digital model that links location-specific climate risk data with suitable GBI measure proposals will make this much easier and more objective.
ReAssuRe – risk management for re-use of construction components and building technology by non-destructive on-site testing procedures
Risk assessment and insurability is essential for the re-use of functional components in buildings. In the best case, properties of components can be examined before they are removed from the donor building. ReAssuRe identifies suitable on-site testing procedures and establishes a network for the quality assurance of re-use components.
RCC2 - Life cycle assessment of heatable formwork for CO2-reduced and climate-neutral concrete
Experimental development of innovative formulations of CO2-reduced concrete and heated formwork to support early strength development in wintry temperatures.
Topview - Methodology for the efficient use of remote sensing data for climate change adaptation and spatial energy planning
Development of integrated approaches to sustainable energy and heat planning in urban areas by utilising remote sensing data and geo-information-based technologies for decision-making in the planning of energy infrastructures and climate adaptation measures.
ThermEcoFlow: Innovative technologies and methods for indoor air comfort and energy optimisation in thermal spa buildings
ThermEcoFlow aims to optimize the energy consumption of thermal spas facilities through improved simulation models and AI-supported control systems. By precisely modelling airflow, humidity loads, and evaporation, combined with AI-driven regulation, the project seeks to reduce energy consumption and CO₂ emissions in the long term while enhancing indoor comfort for visitors.
MaBo - material saving in bored piles - a contribution to reducing CO2-emissions in the construction industry
Development of an innovative method for saving material in bored piles in order to reduce CO2 emissions in the construction industry. By optimizing the construction methods and using alternative materials, the sustainability of the foundation bodies is to be improved.
StirliQ+ Component development of the expansion Stirling generator with supercritical fluid as working & lubrication medium
Technical research and further development of details or components of the novel StirliQ engine, which has the potential to overcome the technical hurdles of conventional Stirling engines. On the basis of simulations as well as a laboratory plant, a narrowing down of the process parameters with regard to a resilient pre-dimension of apparatus components is carried out.