Projekt-Bilderpool

Es wurden 20 Einträge gefunden.

Nutzungshinweis: Die Bilder auf dieser Seite stammen aus den Projekten, die im Rahmen der Programme Stadt der Zukunft, Haus der Zukunft und IEA Forschungskooperation entstanden sind. Sie dürfen unter der Creative Commons Lizenz zur nicht-kommerziellen Nutzung unter Namensnennung (CC BY-NC) verwendet werden.

Smart Home Dienstleistungen

Smart Homes können eine Reihe von Aufgaben übernehmen und bringen viele Vorteile für Haushalte, z. B. Energiemanagement (Energieeffizienz), Nachfragesteuerung (Beitrag zur Regulierung des Energiebedarfs), Stromerzeugung, Stromspeicherung und -einspeisung in das Stromnetz, Komfort, Sicherheit, Unterhaltung und Haushaltsführung (Planung, Online-Shopping), spezialisierte Dienstleistungen (Wellness- oder Gesundheitsmanagement) und betreutes Wohnen.

Smart Home-Systeme

Smart Home-Systeme bestehen im Allgemeinen aus Sensoren und Schaltern die an einen Hub angeschlossen sind (auch Gateway genannt). Vom Hub wird das System über ein Wandterminal (Display), via Mobiltelefon, Computer oder häufig über Cloud-Dienste gesteuert. Smart Home-Systeme nutzen die Netzwerkkonnektivität, um die Beleuchtung, das Heizen / Kühlen oder das Waschen zu Steuern und zu Automatisieren. Dies hat Auswirkungen auf den Energieverbrauch (und auf die Betriebskosten). In EDNA werden diese Auswirkungen untersucht.

Stand der Technik von Batterietechnologien.

Diese Abbildung zeigt den Entwicklungsstand der verschiedenen Technologien für wiederaufladbare Batterien in der Verbraucherelektronik.

Mögliche Energieeinsparungen durch Maßnahmen für Rechenzentren.

Die Grafik zeigt die geschätzten jährlichen Energieeinsparungen bis 2030 für eine Reihe möglicher Maßnahmen zur Effizienzsteigerung von Rechenzentren, basierend auf Modellierungen von EDNA im Jahr 2024.

Netzwerkverbundene Geräte

Schematische Übersicht über netzwerkverbundene Geräte und Anwendungsbereiche.

Weltweiter Energieverbrauch netzwerkverbundener Geräte 2010-2030

Die Abbildung zeigt einen Graphen mit den jährlichen Energieverbräuchen netzwerkverbundener Geräte in verschiedenen Betriebsmodi - Netzwerkaktiv und Netzwerkstandby - sowie mit den vorgelagerten Energieverbräuche von Netzwerken und Rechen- und Datenzentren. Bis 2030 wird der gesamte weltweite Energieverbrauch netzwerkverbundener Geräte auf etwa 1.000 TWh/a steigen. Vor allem die gerätebezogenen Energieverbräuche steigen deutlich, wohingegen die vorgelagerten Energieverbräuche etwas sinken und etwa ein Drittel des Energieverbrauchs, der im Zusammenhang mit netzwerkverbundenen Geräten steht, ausmachen. Diese und weitere Grafiken zum Energieverbrauch netzwerkverbundener Geräte lassen sich mit dem EDNA Total Energy Model (Gesamtenergie-Modell) quantifizieren.

Digitale Technologien zur Steigerung der Energieeffizienz in elektrischen Motorsystemen

Diese Abbildung gibt einen Überblick über die Technologien, die als relevant für die Energieeffizienz in elektrischen Motorsystemen identifiziert und in mehreren Workshops, in der Umfrage und Gesprächen als relevant eingestuft wurden. Beginnend auf der linken Seite der Abbildung sind intelligente Sensoren und erweiterte Steuerung auf Maschinenebene sowie das Internet der Dinge, die eine Kommunikation zwischen den verschiedenen Ebenen und Komponenten ermöglicht, dargestellt. Weiters bestehen zahlreiche Möglichkeiten zur Datenanalyse und damit zur Optimierung des Betriebs: Datenanalyse sowohl auf der Ebene der Motorsysteme als auch auf der Ebene der Produktionslinien oder sogar des gesamten Unternehmens. Eine dabei oft eingesetzte Technologie ist die Echtzeit-Überwachung der verschiedenen Geräte. Technologien, die diesen Anwendungen Vorteile bringen, sind digitale Zwillinge, cloudbasierte Dienste und künstliche Intelligenz. Augmented Reality kann helfen, die vorgeschlagenen Maßnahmen umzusetzen kann aber auch zur Analyse eingesetzt werden. Drei Technologien, die nicht direkt mit der Optimierung motorgetriebener Systeme zusammenhängen, allerdings breitere Beachtung finden sind z. B. Drohnen, 3D-Druck und fortschrittliche Robotik.

Digitale Technologien zur Steigerung der Energieeffizienz in elektrischen Motorsystemen

Die Abbildung gibt einen Überblick über die Technologien, die als relevant für die Energieeffizienz in elektrischen Motorsystemen identifiziert und in mehreren Workshops, in der Umfrage und Gesprächen als relevant eingestuft wurden. Beginnend auf der linken Seite der Abbildung sind intelligente Sensoren und erweiterte Steuerung auf Maschinenebene sowie das Internet der Dinge, die eine Kommunikation zwischen den verschiedenen Ebenen und Komponenten ermöglicht, dargestellt. Weiters bestehen zahlreiche Möglichkeiten zur Datenanalyse und damit zur Optimierung des Betriebs: Datenanalyse sowohl auf der Ebene der Motorsysteme als auch auf der Ebene der Produktionslinien oder sogar des gesamten Unternehmens. Eine dabei oft eingesetzte Technologie ist die Echtzeit-Überwachung der verschiedenen Geräte. Technologien, die diesen Anwendungen Vorteile bringen, sind digitale Zwillinge, cloudbasierte Dienste und künstliche Intelligenz. Augmented Reality kann helfen, die vorgeschlagenen Maßnahmen umzusetzen kann aber auch zur Analyse eingesetzt werden. Drei Technologien, die nicht direkt mit der Optimierung motorgetriebener Systeme zusammenhängen, allerdings breitere Beachtung finden sind z. B. Drohnen, 3D-Druck und fortschrittliche Robotik.

Instrumente zur Überwindung der Barrieren bei Nutzung digitaler Technologien

Rund drei Viertel der Befragten betrachten die Entwicklung von Bildungsprogrammen und den Standardisierungsprozess zur Harmonisierung von Protokollen sowie Forschungssubventionen als wichtige politische Instrumente zur Überwindung dieser Hindernisse.

Möglichkeiten zum Erkennen von Störungen der Pumpen- und Motorfunktion durch Strom- und Spannungsanalyse

Auf dieser Grafik ist links der Querschnitt einer Radialpumpe zu sehen. Diese ist über eine Achse mit einer Kupplung mit dem Querschnitt eines Elektromotors verbunden. An diesem Motor ist eine Verbindung zu einem Rechteck mit der Bezeichnung FU für Frequenzumrichter verbunden, die dickere Verbindung teilt sich kurz davor in drei Linien auf, die drei Phasen darstellen. An diesen Linien sind mit kleinen Kreisen drei andersfarbige Linien eingezeichnet, die die dreiphasige Strom- und Spannungsmessung darstellen und zu einem kleinen aufrechten Rechteck führen. Ganz rechts bei der Pumpe ist ein Feld mit Text eingezeichnet, der mit einem Pfeil auf den Pumpenquerschnitt zeigt. Im Text steht Folgendes: Ein Anstieg des Rauschpegels um die Versorgungsfrequenz herum ist typisch für Pumpenkavitation. Ein weiteres Feld zeigt auf die Kupplung zwischen Pumpe und Motor, ein kleines Rechteck als Verbindung zwischen Pumpen- und Motorachse. Der Text dazu lautet: Ein Anstieg bei der Rotationsfrequenz des Motors und ihren Oberschwingungen sowie ein Anstieg im Rauschpegel sind typisch für einen Kupplungsfehler. Ein weiteres Feld zeigt auf die Stelle, wo die Motorachse aus dem Motorgehäuse herauskommt, wo ein Lager eingezeichnet ist. Der Text in diesem Feld lautet: Ein Anstieg bei der Käfigfrequenz des Wälzlagers ist typisch für einen Lagerverschleiß. Die bisher genannten Textfelder sind mit blauer Farbe hinterlegt. Diese Farbe kennzeichnet mechanische Fehler. Ein weiteres rot hinterlegtes Feld deutet auf das Innere des Elektromotors. Der Text lautet: Kurzschlüsse bei der Statorwicklung weisen typischerweise einen Anstieg bei ungeraden Stromoberschwingungen auf. Die rote Farbe bedeutet, dass es sich um einen elektrischen Fehler handelt.

Struktur von PECTA während Phase 1.

Im Zuge von PECTAs Phase 1 wurden zwei Tasks bearbeitet. Task 1: Efficiency Potential in Applications. Task 2: Roadmaps for Power Devices. Die Position des Operating Agent Position wurde durch Österreich besetzt. Task 1 und Task 2 wurde mittels Beteiligung aus Österreich, Schweden und Schweiz durchgeführt. Die Industry Advisory Group wird durch die Schweiz koordiniert.

PECTA‘s Kommunikations und Vernetzungsstrategie

Kommunikationsstrategie, Informationsfluss und Vernetzung diverser Interessensgruppen in 4E PECTA im Bereich WBG.

Methoden

Methoden zur Klassifizierung der Tätigkeitsbereiche von TCP Tasks und Annexes. Entwickelt von Andreas Indinger / Österreichische Energieagentur.

R&D Themenlandkarte

Abbildung aller aktuellen Tasks und Annexes ("Activities") mit ihrer thematischen Zuordnung zu bis zu drei Themen.

Graph Datenstruktur

Graphbasierte Datenstruktur des frei zugänglichen IEA-TCP Datensatzes.

Österreichische Aktivitäten Weltweit

Die interaktive Weltkarte (zoombar) zeigt die Kooperationen Österreichs bzw. österreichischer Organisationen in den Technologieprogrammen (TCPs) der Internationalen Energieagentur (IEA) mit anderen Ländern. Jedes TCP kann dabei mehrere Tasks (Aktivitäten) umfassen, die sich sowohl thematisch als auch durch die Beteiligung anderer Länder unterscheiden können. Die vollständig dynamische Visualisierung ist verfügbar unter https://nachhaltigwirtschaften.at/de/iea/visualisierungen/weltweite-kooperationen.php

Internationale Kooperationen Österreichs im Rahmen der TCPs.

Weltkarten Darstellung mit den internationalen Kooperationen Österreichs im Rahmen der IEA Technology Collaboration Programs. Die Linienstärke spiegelt die Anzahl der TCP-Aktivitäten wieder, in denen Österreich mit dem betreffenden Land kooperiert.

Teilnahme der Länder an den IEA Technology Collaboration Programmes und verwandten Forschungsthemen

Absolute (oben) und relative (unten) Zahl an TCP Aktivitäten, an denen die Länder teilnehmen. An den Farben ist erkennbar, mit welchen IEA-Themen die Aktivitäten in Verbindung stehen und wo die einzelnen Länder ihre Prioritäten in Bezug auf die Forschungsthemen setzen (basierend auf der IEA FE&D Taxonomie).

IEA Themen, Aktivitäten und Working Parties

IEA Themen Level1 (orange, Größe der Punkte bezieht sich auf das offizielle FE&D Budget 2015) und TCP-Aktivitäten (nicht-orange Punkte) sowie verwandte TCP Working Parties (Farbcodes in der Legende).

Kombinationen von Methodischen Ansätzen, die von TCP-Aktivitäten häufig gemeinsam angewandt werden

Im Rahmen des Projektes IEA TCP wurde ein Methodenkatalog erarbeitet, der die Art der Arbeit in den TCP Aktivitäten klassifiziert. Jeder Aktivität bis zu drei Methoden zugeordnet. Der Graph die absolute anzahl der Nennungen (Größe) sowie die häufig gemeinsam verwendete Methoden (Verbindungen).