Projekt-Bilderpool

Es wurden 19 Einträge gefunden.

Nutzungshinweis: Die Bilder auf dieser Seite stammen aus den Projekten, die im Rahmen der Programme Stadt der Zukunft, Haus der Zukunft und IEA Forschungskooperation entstanden sind. Sie dürfen unter der Creative Commons Lizenz zur nicht-kommerziellen Nutzung unter Namensnennung (CC BY-NC) verwendet werden.

Möglichkeiten zum Erkennen von Störungen der Pumpen- und Motorfunktion durch Strom- und Spannungsanalyse

Auf dieser Grafik ist links der Querschnitt einer Radialpumpe zu sehen. Diese ist über eine Achse mit einer Kupplung mit dem Querschnitt eines Elektromotors verbunden. An diesem Motor ist eine Verbindung zu einem Rechteck mit der Bezeichnung FU für Frequenzumrichter verbunden, die dickere Verbindung teilt sich kurz davor in drei Linien auf, die drei Phasen darstellen. An diesen Linien sind mit kleinen Kreisen drei andersfarbige Linien eingezeichnet, die die dreiphasige Strom- und Spannungsmessung darstellen und zu einem kleinen aufrechten Rechteck führen. Ganz rechts bei der Pumpe ist ein Feld mit Text eingezeichnet, der mit einem Pfeil auf den Pumpenquerschnitt zeigt. Im Text steht Folgendes: Ein Anstieg des Rauschpegels um die Versorgungsfrequenz herum ist typisch für Pumpenkavitation. Ein weiteres Feld zeigt auf die Kupplung zwischen Pumpe und Motor, ein kleines Rechteck als Verbindung zwischen Pumpen- und Motorachse. Der Text dazu lautet: Ein Anstieg bei der Rotationsfrequenz des Motors und ihren Oberschwingungen sowie ein Anstieg im Rauschpegel sind typisch für einen Kupplungsfehler. Ein weiteres Feld zeigt auf die Stelle, wo die Motorachse aus dem Motorgehäuse herauskommt, wo ein Lager eingezeichnet ist. Der Text in diesem Feld lautet: Ein Anstieg bei der Käfigfrequenz des Wälzlagers ist typisch für einen Lagerverschleiß. Die bisher genannten Textfelder sind mit blauer Farbe hinterlegt. Diese Farbe kennzeichnet mechanische Fehler. Ein weiteres rot hinterlegtes Feld deutet auf das Innere des Elektromotors. Der Text lautet: Kurzschlüsse bei der Statorwicklung weisen typischerweise einen Anstieg bei ungeraden Stromoberschwingungen auf. Die rote Farbe bedeutet, dass es sich um einen elektrischen Fehler handelt.

Digitale Technologien zur Steigerung der Energieeffizienz in elektrischen Motorsystemen

Diese Abbildung gibt einen Überblick über die Technologien, die als relevant für die Energieeffizienz in elektrischen Motorsystemen identifiziert und in mehreren Workshops, in der Umfrage und Gesprächen als relevant eingestuft wurden. Beginnend auf der linken Seite der Abbildung sind intelligente Sensoren und erweiterte Steuerung auf Maschinenebene sowie das Internet der Dinge, die eine Kommunikation zwischen den verschiedenen Ebenen und Komponenten ermöglicht, dargestellt. Weiters bestehen zahlreiche Möglichkeiten zur Datenanalyse und damit zur Optimierung des Betriebs: Datenanalyse sowohl auf der Ebene der Motorsysteme als auch auf der Ebene der Produktionslinien oder sogar des gesamten Unternehmens. Eine dabei oft eingesetzte Technologie ist die Echtzeit-Überwachung der verschiedenen Geräte. Technologien, die diesen Anwendungen Vorteile bringen, sind digitale Zwillinge, cloudbasierte Dienste und künstliche Intelligenz. Augmented Reality kann helfen, die vorgeschlagenen Maßnahmen umzusetzen kann aber auch zur Analyse eingesetzt werden. Drei Technologien, die nicht direkt mit der Optimierung motorgetriebener Systeme zusammenhängen, allerdings breitere Beachtung finden sind z. B. Drohnen, 3D-Druck und fortschrittliche Robotik.

Digitale Technologien zur Steigerung der Energieeffizienz in elektrischen Motorsystemen

Die Abbildung gibt einen Überblick über die Technologien, die als relevant für die Energieeffizienz in elektrischen Motorsystemen identifiziert und in mehreren Workshops, in der Umfrage und Gesprächen als relevant eingestuft wurden. Beginnend auf der linken Seite der Abbildung sind intelligente Sensoren und erweiterte Steuerung auf Maschinenebene sowie das Internet der Dinge, die eine Kommunikation zwischen den verschiedenen Ebenen und Komponenten ermöglicht, dargestellt. Weiters bestehen zahlreiche Möglichkeiten zur Datenanalyse und damit zur Optimierung des Betriebs: Datenanalyse sowohl auf der Ebene der Motorsysteme als auch auf der Ebene der Produktionslinien oder sogar des gesamten Unternehmens. Eine dabei oft eingesetzte Technologie ist die Echtzeit-Überwachung der verschiedenen Geräte. Technologien, die diesen Anwendungen Vorteile bringen, sind digitale Zwillinge, cloudbasierte Dienste und künstliche Intelligenz. Augmented Reality kann helfen, die vorgeschlagenen Maßnahmen umzusetzen kann aber auch zur Analyse eingesetzt werden. Drei Technologien, die nicht direkt mit der Optimierung motorgetriebener Systeme zusammenhängen, allerdings breitere Beachtung finden sind z. B. Drohnen, 3D-Druck und fortschrittliche Robotik.

Instrumente zur Überwindung der Barrieren bei Nutzung digitaler Technologien

Rund drei Viertel der Befragten betrachten die Entwicklung von Bildungsprogrammen und den Standardisierungsprozess zur Harmonisierung von Protokollen sowie Forschungssubventionen als wichtige politische Instrumente zur Überwindung dieser Hindernisse.

Überblick möglicher Messpunkte zur Digitalisierung von Druckluftanlagen

Auf der Grafik sind ein Kompressor im Form eines größeren Vierecks zu erkennen. Hier sind Virbrationsmessung und Strom- und Spannungsmessung als kleine Kreise angefügt. Auf dem Viereck ist ein kleines Rechteck mit dem Hinweis: Interne Kompressorsteuerung. Außerdem gibt es eine dicke Verbindung zu einem weiteren Rechteck zu übergeordneter Steuerung. In der Nähe ist ein kleiner Kreis für die Raumtemperatur. Aus dem Kompressor kommt eine Leitung zu einem Druckluftfilter mit elektronischer Drucküberwachung und weiter zu einem größeren Rechteck, dem Trockner. Die Leitung verläuft nach zwei weiteren Druckluftfiltern zum Druckbehälter, einem größeren Oval mit drei Füßen. Die Leitung verläuft weiter aus dem Druckbehälter. Hier sind dann nacheinander die kleinen Kreise mit den Bezeichnungen für Druckmessung, Volumenstrommessung, Temperaturmessung, Taumpunktmessung und Messung für Restölgehalt und Partikel angeführt, außerdem ist ein elektrisch betriebener Absperrhahn eingezeichnet. Rund um diese Komponenten ist eine strichlierte Linie im Form eines Rechtecks für die Kompressorstation eingezeichnet. Die Leitung verläuft weiter aus diesem Rechteck. In weiterer Folge sind Druckmessung und Volumenstrommessung einzeichnet sowie ein elektrisch betätigtes Absperrventil. Am Ende der Leitung ist wieder ein Rechteck eingezeichnet mit der Aufschrift: Verbraucher. Innerhalb des strichlierten Rechtecks über den genannten Komponenten befinden sich zwei Zeichen, eines in Form eines Computerbildschirms mit der Bezeichnung: Datenauswertung und -analyse, darüber eine blaue Wolke mit der Bezeichnung: Cloud (optional). Alle genannten Messung sind über eine strichlierte Linie mit der Datenauswertung verbunden.

Smart Home-Systeme

Smart Home-Systeme bestehen im Allgemeinen aus Sensoren und Schaltern die an einen Hub angeschlossen sind (auch Gateway genannt). Vom Hub wird das System über ein Wandterminal (Display), via Mobiltelefon, Computer oder häufig über Cloud-Dienste gesteuert. Smart Home-Systeme nutzen die Netzwerkkonnektivität, um die Beleuchtung, das Heizen / Kühlen oder das Waschen zu Steuern und zu Automatisieren. Dies hat Auswirkungen auf den Energieverbrauch (und auf die Betriebskosten). In EDNA werden diese Auswirkungen untersucht.

Smart Home Dienstleistungen

Smart Homes können eine Reihe von Aufgaben übernehmen und bringen viele Vorteile für Haushalte, z. B. Energiemanagement (Energieeffizienz), Nachfragesteuerung (Beitrag zur Regulierung des Energiebedarfs), Stromerzeugung, Stromspeicherung und -einspeisung in das Stromnetz, Komfort, Sicherheit, Unterhaltung und Haushaltsführung (Planung, Online-Shopping), spezialisierte Dienstleistungen (Wellness- oder Gesundheitsmanagement) und betreutes Wohnen.

EDNA Arbeitsweise

Die Abbildung zeigt sechs farbige Säulen mit Überschriften, die zusammen die strategische Arbeitsweise von EDNA darstellen. Die erste Säule in Grün entspricht der technischen Analyse und enthält zwei Blöcke für Energieverschwendung und Digitalisierung. Diese wiederum beinhalten gemeinsame spezifische Unterthemen, diese sind: Edge Devices und Sensoren, Protokolle und Software, Small Area Network und Upstream Equipment. Die orangefarbene Säule bezieht sich auf die Marktanalyse, und rechts daneben deckt die dunkelgrüne Säule die Themen des Stakeholderengagements ab. Bei der violetten Säule geht es um die Entwicklung von Synergien. Das Ziel dieses Arbeitspfades ist die dunkelgelbe Säule, die sich auf die Unterstützung der Politik bezieht. Die letzte Säule in Rosa bezieht sich auf die Verbreitung von Informationen. Ein grauer Pfeil über den farbigen Säulen zeigt den Verlauf der Arbeit in EDNA an, von links nach rechts, also von der Analyse bis hin zur Politikunterstützung und Verbreitung.

Weltweiter Energieverbrauch netzwerkverbundener Geräte 2010-2030

Die Abbildung zeigt einen Graphen mit den jährlichen Energieverbräuchen netzwerkverbundener Geräte in verschiedenen Betriebsmodi - Netzwerkaktiv und Netzwerkstandby - sowie mit den vorgelagerten Energieverbräuche von Netzwerken und Rechen- und Datenzentren. Bis 2030 wird der gesamte weltweite Energieverbrauch netzwerkverbundener Geräte auf etwa 1.000 TWh/a steigen. Vor allem die gerätebezogenen Energieverbräuche steigen deutlich, wohingegen die vorgelagerten Energieverbräuche etwas sinken und etwa ein Drittel des Energieverbrauchs, der im Zusammenhang mit netzwerkverbundenen Geräten steht, ausmachen. Diese und weitere Grafiken zum Energieverbrauch netzwerkverbundener Geräte lassen sich mit dem EDNA Total Energy Model (Gesamtenergie-Modell) quantifizieren.

Integration von PECTA im 4E Technologieprogramm

Die aktuelle Struktur des 4E Technologieprogramms besteht seit März 2019 aus den Annexen EMSA (Electric Motor Systems Annex), SSL (Solid State Lighting Annex), EDNA (Electronic Devices & Networks Annex) und PECTA (Power Electronic Conversion Technology Annex).

Struktur von PECTA während Phase 1.

Im Zuge von PECTAs Phase 1 wurden zwei Tasks bearbeitet. Task 1: Efficiency Potential in Applications. Task 2: Roadmaps for Power Devices. Die Position des Operating Agent Position wurde durch Österreich besetzt. Task 1 und Task 2 wurde mittels Beteiligung aus Österreich, Schweden und Schweiz durchgeführt. Die Industry Advisory Group wird durch die Schweiz koordiniert.

Methoden

Methoden zur Klassifizierung der Tätigkeitsbereiche von TCP Tasks und Annexes. Entwickelt von Andreas Indinger / Österreichische Energieagentur.

R&D Themenlandkarte

Abbildung aller aktuellen Tasks und Annexes ("Activities") mit ihrer thematischen Zuordnung zu bis zu drei Themen.

Visualisierung von TCPs

Beispielhafte visualisierung der TCP Tasks und Annexes, die sich mit einem bestimmten Thema beschäftigen. Die vollständig dynamische Visualisierung ist verfügbar unter https://nachhaltigwirtschaften.at/en/iea/visualisations/tcps-focussing-on-a-topic.php

Österreichische Aktivitäten Weltweit

Die interaktive Weltkarte (zoombar) zeigt die Kooperationen Österreichs bzw. österreichischer Organisationen in den Technologieprogrammen (TCPs) der Internationalen Energieagentur (IEA) mit anderen Ländern. Jedes TCP kann dabei mehrere Tasks (Aktivitäten) umfassen, die sich sowohl thematisch als auch durch die Beteiligung anderer Länder unterscheiden können. Die vollständig dynamische Visualisierung ist verfügbar unter https://nachhaltigwirtschaften.at/de/iea/visualisierungen/weltweite-kooperationen.php

Kombinationen von Methodischen Ansätzen, die von TCP-Aktivitäten häufig gemeinsam angewandt werden

Im Rahmen des Projektes IEA TCP wurde ein Methodenkatalog erarbeitet, der die Art der Arbeit in den TCP Aktivitäten klassifiziert. Jeder Aktivität bis zu drei Methoden zugeordnet. Der Graph die absolute anzahl der Nennungen (Größe) sowie die häufig gemeinsam verwendete Methoden (Verbindungen).

Teilnahme der Länder an den IEA Technology Collaboration Programmes und verwandten Forschungsthemen

Absolute (oben) und relative (unten) Zahl an TCP Aktivitäten, an denen die Länder teilnehmen. An den Farben ist erkennbar, mit welchen IEA-Themen die Aktivitäten in Verbindung stehen und wo die einzelnen Länder ihre Prioritäten in Bezug auf die Forschungsthemen setzen (basierend auf der IEA FE&D Taxonomie).

IEA-TCP Graph: Darstellung aller Knoten und Verbindungen im IEA-TCP Datenmodell

Darstellung aller Knoten und Verbindungen im IEA TCP Datenmodell. Die größe der Knoten spiegelt den Grad der Vernetztheit wieder, die Farbe die Art des Knotens (siehe Legende).

IEA Themen, Aktivitäten und Working Parties

IEA Themen Level1 (orange, Größe der Punkte bezieht sich auf das offizielle FE&D Budget 2015) und TCP-Aktivitäten (nicht-orange Punkte) sowie verwandte TCP Working Parties (Farbcodes in der Legende).