Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Stadt der Zukunft

Itz Smart – Carbon neutral city district development Itzling – Implementing innovation and technology via co-operative process design

The goal of the project “Itz Smart” is to tie in with existing activities and to consistently develop Itzling as a residential location further. In the test and demonstration area, sustainable residential quarters with trendsetting solutions for mobility are developed in the zone of the transport axis (railway and Schillerstraße) and along the local supply axis (Itzlinger Hauptstraße). The consideration of housing and mobility with regard to the aspect of “city of short ways“ also entails a discussion of determined mixed utilisation and the development of such residential quarters.

Haus der Zukunft

PEAR – Test facility for energy efficient automation and control of buildings

The energy demand calculated in the design phase often differs from measured values in the actual building operation. This projects reviews building automation and operation by presenting a solution how to assess energy efficiency of control strategies in the fields of air conditioning systems, concrete core activation and free cooling. The results are implemented in the demonstration building "Post am Rochus".

Haus der Zukunft

SIMULTAN - Simultaneous planning environment for buildings in resilient, highly energy efficient and resource-efficient districts

This project enabled the opportunity for an essential energy efficiency increase within overlapping buildings, to achieve the objective of resilient cities and districts with respect to a high quality of life, resource sustainability and energy efficiency. The goal was a workable tool based on a multidisciplinary planning approach, to support the decision finding process in order to design both refurbishment projects and new developments within a highly efficient city.

Haus der Zukunft

Smart Services for resource optimized energy systems in urban districts

The concept of a smart city explicitly refers to a sustainable city development. To apply smart city concepts in practice, it is essential to develop practice- and profit-oriented business models (smart services), which at the same time generate social and ecological benefits. Smart services were developed for the application in three specific city development areas and their practicability was verified in a comprehensive stakeholder process with decision makers.

Stadt der Zukunft

ECC – EnergyCityConcepts – Development of a methodology and concept for the implementation of sustainable energy systems in cities by the example of Gleisdorf and Salzburg

In the context of this project two concrete model regions (small city Gleisdorf and urban city quarter Salzburg-Schallmoos) will be developed and tested with new methodical approaches (interdisciplinary urban and regional energy planning, modeling and simulation). An ambitious political commitment of both model regions is a 100% renewable or rather CO2-neutral energy supply.

Stadt der Zukunft

ÖKO-OPT-QUART - Economically optimized control and operating mode of complex energy networks of future city districts

In the project ÖKO-OPT-QUART energy-based, economic and control-orientated models will be developed in order to simulate the operating mode of complex, sustainable energy networks in city districts. For an exemplary configuration these models will be combined to an overall model which allows a realistic economic comparison of different control strategies. The final goal of the project is the development of a method for the systematic design of cost-optimized, predictive control strategies for complex energy networks in city districts.

Stadt der Zukunft

Salzburg:KanS - Salzburg: Climate-neutral city

Salzburg:KanS aligns the vision and climate protection goals of the city of Salzburg with the climate neutrality targets of the province and estimates the sector-specific CO2 reduction contributions until 2030. Based on these contributions, the project develops implementation strategies for the entire city as well as the focus areas of “climate-neutral mobility” and “climate-neutral neighborhoods”.

Haus der Zukunft

URSOLAR - Optimization of SOLAR energy usage in URban energy systems

URSOLAR provides decision makers with a roadmap for the integrated use of solar energy in urban environments. The roadmap shows, how photovoltaics- and solar-thermal installations can be used in an ecological, economical and socially optimal way whilst considering legal requirements as well as infrastructural conditions in typical city quartiers and stakeholder interests.

Haus der Zukunft

Site certificate

Possibilities and requirements of transferring the Swiss “2000-Watt Site” certificate to Austria

Stadt der Zukunft

Plus-Energy-Campus - Energy-flexible Positive Energy District with "Living Lab"

The project explored paths to a sustainable, future-proof Positive Energy-District (PED) in the area surrounding the location of the University of Applied Sciences Vienna (FH-Technikum Wien). The feasibility of a new university building as a Plus-Energy teaching building had been examined in detail to prepare its implementation. Central innovation contents are the energetic flexibilization of the new building and the quarter as well as the conception of the Plus-Energy building as a "Living Lab".

Stadt der Zukunft

Villab – Exploration of a Villach innovation laboratory for the cooperative development of sustainable neighbourhoods

The "Villab - Probe" project serves to check the feasibility of an urban innovation laboratory to accelerate the transformation of Villach districts towards climate neutrality. Assuming positive feasibility, the cooperation with relevant stakeholders will be deepened and a business plan drawn up for a future innovation laboratory.

Stadt der Zukunft

ecoRegeneration: Development of a "Merit-Order" in order to assess regeneration heat for geothermal probes within urban residential neighbourhoods

In urban residential areas there are not enough active-cooled usages, to use the waste heat of the cooling process as required regeneration heat for geothermal probes; free cooling of the apartments is not sufficient. The project is developing various options (waste heat from commercial uses in the ground floor zones of residential buildings, by using waste heat of data centres, additional installation of heat generation systems for regeneration) within the urban settlement area, business models and is calculating life-cycle-costs of all solutions. The result should be a kind of "merit order" for regeneration heat.

Stadt der Zukunft

Smart Pölten 2.0 Holistic view on a Vertical Farm in preparation for a demonstration project for the city of St. Pölten

The city of St. Pölten forsees great potential in Vertical Farming with regard to the objectives related to the concept of the Smart City program - linking local food production, quality of life by reducing resource consumption. This has to be evaluated by combining Vertical Farms with existing living buildings. Eco-social and socio-economic considerations play an important role in this process.

Stadt der Zukunft

Anergy2Plus - Demonstration and expansion of an anergy network as part of a holistic energy concept and plus energy quarter

The overall objective of the project is to pursue and demonstrate a holistic approach to the design, construction and ultimately the use of the residential quarter in the context of energy supply. Especially in the area of thermal energy supply, a project with lighthouse character on the way to a plus-energy quarter is to be created by demonstrating the innovative supply concept based on an anergy network.

Stadt der Zukunft

Plus Energy Melk - Path for the realization of Plus-Energy-Districs in Melk

The city of Melk has set itself the goal of playing a pioneering role in renewable energy supply and climate protection. In this context, an initiative aimed at implementing Positive Energy Districts. Two urban development projects are currently underway to examine under which framework conditions, technical and organisational solutions Positive Energy Districts can be realised. A proactive participation process aims at informing developers and investors as well as other stakeholders about the realization of PlusEnergy concepts.

Haus der Zukunft

KELVIN - Reducing the urban heat island effect via improving the reflective properties of buildings and urban areas

The aim of this project was to estimate the potential to reduce urban heat islands via low-tech measures such as the variation of the surface albedo, using the City of Vienna as an example. The project has also assessed the energy savings and greenhouse gas emission reductions due to the decreased energy demand for cooling as a result of such measures.

Haus der Zukunft

urban pv+geotherm - Innovative concepts for the supply of large volume buildings/ quarters with PV and geothermal energy

The use of renewable energies in inner city locations is mostly linked to higher costs andconsidered as problematic. The aim of this project was to optimize (cost and energy) heating (and where required, cooling) using geothermic and photovoltaic for an urban, densely-built development area. With the project´s findings it will be easier to ecologically and economically plan the use of renewable energies especially in urban areas.

Haus der Zukunft

SynENERGY - Energy optimised settlement development by making use of synergies of energy efficiency, spatial planning and building culture

SynENERGY aims at an innovative, holistic approach to urban district optimization. The project targets a comprehensive analysis of the framework and urban development concept which includes not only optimisation of sustainable energy supply and use but also increased material flows (construction and disposal) at urban district level.

Haus der Zukunft

Manage_GeoCity - Development of a method for the coordinated management of geothermal energy in urban areas

Based on the urban region Graz a method had been developed for the coordinated use and management of shallow geothermal energy for heating and cooling as well as seasonal heat storage in urban regions. Ground water flow, different geologic conditions, heating and cooling demand, heat input from solar collectors and industrial waste heat and the possibilities of seasonal heat storage in the subsurface were considered.

Haus der Zukunft

BIMaterial Process Design for Material Building Pass

Building Information Modelling supported compilation of a Material Building Pass; as a qualitative and quantitative documentation of the material composition of, and the material distribution within, a building structure. This project is a central milestone towards standardized, BIM-generated building material passes.