Suchergebnisse
SonnWende+ Efficient solutions for photovoltaic energy management based on block chain technology
The project deals with the analysis of Blockchain technology in the context of renewable electricity producers and flexibility as enabler for innovative service concepts, tested in the innovation-lab “Energie Innovation Cluster Südburgenland”. The goal is to find new and efficient Blockchain-based solutions for services in energy management and trading in a local level.
INFINITE: INnovative FINancing models for sustaInable urban energy sysTEms
The goal of the INFINITE-project is to lay the foundations for a more wide-spread implementation of urban energy supply systems across buildings, using renewable energy sources produced in local supply units. At the same time the projects supports to reduce the demand for fossil fuels and higher-level energy infrastructure.
SeasonalGridStorage - Innovative seasonale thermal storages for urban district heating grids
Sensible storages, which are currently used in district heating networks for seasonal storage of excess heat (e.g. from solar thermal or industrial waste heat), exhibit high space demand, investment costs and heat losses. Within this project, concepts for using innovative storage technologies, e.g. thermochemical storages (TCS) having high heat densities and enabling pressure- and lossless storage, were developed and analyzed on a technological, economic and ecological basis. Additionally, the regulatory framework has been evaluated.
HotCity - Gamification as a possibility to generate data for energy-oriented neighbourhood planning
The aim of the project was a functional test to determine whether an up-to-date data set of energy-oriented data can be collected for neighbourhood planning through gamification, cost-efficiently, quickly and reliably. This had been determined using the example of the potential determination of industrial and commercial waste heat sources in Vienna and Graz.
GREENsChOOLENERGY - Development and practical implementation of sustainable solutions for urban hotspots in combination with greening / PV / water
Use of the synergetic effects in the construction of photovoltaic, greening and irrigation systems at the location of HTL1 Klagenfurt Lastenstraße, to optimize the yield of experimental photovoltaic elements and at the same time reduce urban heat islands.
Villab – Exploration of a Villach innovation laboratory for the cooperative development of sustainable neighbourhoods
The "Villab - Probe" project serves to check the feasibility of an urban innovation laboratory to accelerate the transformation of Villach districts towards climate neutrality. Assuming positive feasibility, the cooperation with relevant stakeholders will be deepened and a business plan drawn up for a future innovation laboratory.
Cooling LEC - Energy-flexible buildings by controlling cooling systems via unidirectional communication in local energy communities
As a result of climate change and the rise in temperature, especially due to the increase in active cooling systems, especially at low-voltage level, new challenges are being posed to the electricity system (in particular to the distribution network). Due to the high electrical input of active cooling units and the high density of plants, which are sometimes operated uncoordinated and at unfavorable times, leads to peak consumption in the system. The project Cooling LEC therefore has as its overall objective the development and demonstration of a central control / intelligence of decentralized active cooling systems by further developing the unidirectional communication of ripple control systems to create energy-flexible buildings in the sense of the new approach of "Local Energy Communities" by creating a "special tariff". Ripple control systems have been established for many decades and are available and proven by all energy suppliers. The upscaling potential is very big.
EDEN - Developement of a structured data and preparation documentation with a minimized error-proneness for energy performance cerificates.
Current energy performance certificates hold major flaws. Therefore, the presented research initiative aimed at the development of a standardized and easy-to-use, generic Input-Data-Documentation, which ensures the quality of energy certificates for all involved stakeholders. During the development, the documentation had been conducted and for a chosen sample of representative buildings, which is expected to demonstrate the high potential of such a development.
P2PQ - Peer2Peer im Quartier
The research project Peer2Peer im Quartier deals with applications optimizing the selfconsumption of PV-generated energy within urban quarters by enabling peer-to-peer relations among energy prosumers based on Blockchains. Aim is to develop and validate these applications in real operation.
Repair & Do-It-Yourself Urbanism (R&DIY-U)
The project follows the aim to analyze and to strengthen the transformative potential of Repair & Do-It-Yourself Urbanism with regard to a fundamental change of the existing poor sustainable handling of commodities in selected urban districts, their infrastructures and dominant business and private household practices into resilient areas.
UrbanEnergyCells - Requirements for the implementation of energy cells in future energy system designs
The transformation of the currently hierarchical electricity system into a renewable, decentralized electricity system poses major challenges for the actors in the energy industry and society. Most of the installed decentralized renewable energy sources are installed in rural areas, due to easier legal implementation and shorter decision-making pathways. However, the energy density in urban areas is significantly higher, resulting in a transport of electrical energy to the consumption centers.
ENUMIS - Energetic effects of urban manufacturing in the city
The project examines the challenges of urban manufacturing (UM) from the energy perspective and shows opportunities arising from the implementation of UM concepts for the future design of sustainable energy systems for cities.
ÖKO-OPT-QUART - Economically optimized control and operating mode of complex energy networks of future city districts
In the project ÖKO-OPT-QUART energy-based, economic and control-orientated models will be developed in order to simulate the operating mode of complex, sustainable energy networks in city districts. For an exemplary configuration these models will be combined to an overall model which allows a realistic economic comparison of different control strategies. The final goal of the project is the development of a method for the systematic design of cost-optimized, predictive control strategies for complex energy networks in city districts.
RENEWnow - New impulses for the highly efficient energetic renovation of multi-storey buildings and districts
Exploration of an innovative approach for the highly efficient renovation of apartment buildings in Austria. The aim is to develop a new service model (one-stop shop) for property managers and owner associations through a targeted, novel mix of technical and non-technical measures.
Smart Pölten 2.0 Holistic view on a Vertical Farm in preparation for a demonstration project for the city of St. Pölten
The city of St. Pölten forsees great potential in Vertical Farming with regard to the objectives related to the concept of the Smart City program - linking local food production, quality of life by reducing resource consumption. This has to be evaluated by combining Vertical Farms with existing living buildings. Eco-social and socio-economic considerations play an important role in this process.
CoolAIR - Predictive control of natural nighttime ventilation and daylight-optimized shading for passive building cooling
Natural nighttime ventilation and daylight-optimized shadowing are high potential approaches to efficiently and economical cool buildings. Nevertheless, the full potential cannot be acquired, since, if at all, such behavior is manually initiated by users. Goal of this project is the development of an automated, self-learning system that can assess the full cooling capabilities and establish an alternative to conventional air conditioning systems.
50 green houses - Development and demonstration of a low-tech façade greening system
Development of a cost-efficient all-in façade greening system („Greening-Toolkit“) including a maintenance concept, involving all trades and processes, for a broad (facing roads) implementation on facades in the urban built environment, combined with a process innovation for simplification of all necessary coordination processes.
GameOpSys - Gamification for optimizing the energy consumption of buildings and higher-level systems
The central goal is the development of a mobile application that enables the energy optimization and planning of buildings, neighborhoods and higher-level energy systems through the participation of the user and the user as a new source of data and information. The development of the application is strongly transdisciplinary and integrates mathematical methods of simulation and optimization as well as psychological aspects of user behavior in order to develop new business models and open up new markets.
Urban MoVe - Private law contracts as innovative instruments for city and mobility planning.
The research project Urban MoVe investigated to what extent private-law contracts (e.g. mobility contracts, funds, urban development contracts) are suitable as municipal planning and steering instruments for mobility at residential locations based on best practice analyzes and implemented national practical examples.
RAARA - Residential Area Augmented Reality Acoustics
Populations with high exposure to noise emissions will generally agree: Noise means trouble. The aim of project RAARA is to develop a simple, intuitive albeit accurate method for reducing noise imissions in urban areas. This method involves placing a noise-source into its planned real-world destination prior to actual installation, by means of augmented reality. The ensuing sound-imissions are then made tangible by means of sound effects and coloured visualizations. This exceptional approach will facilitate planning for heating and cooling devices and thus reduce noise pollution in urban areas. This, in turn, can contribute to an increase in societal acceptance and investment in renewable energy.