Suchergebnisse
Energy-Sponge: The Building as an Energy-Sponge - Electricity In - Heat Out
Innovative, dynamic control concepts had been developed which enable (air) heat pumps in combination with PV- or renewable grid electricity to use the building mass of a multi-familiy house as heat storage. User acceptance had been evaluated and possible business models had been developed.
solSPONGEhigh - High solar fraction by thermally activated components in an urban environment
Within this project the intensive use of thermally activated building elements (TABs) as an additional thermal storage in different buildings, with solar technologies (thermal, PV) preferred for energy supply, was investigated. The aim was to activate and use the thermal storage potential that is immanent in the building elements and thereby achieve solar coverage of the building's heat demand of nearly 100 %.
PowerShade - Development of electricity-generating shading solutions for energy-flexible buildings in urban space
The main goal of the cooperative R&D project "PowerShade" was the development of low-cost and universally usable electricity-generating shading solutions for energy-flexible buildings in urban space.
urban pv+geotherm - Innovative concepts for the supply of large volume buildings/ quarters with PV and geothermal energy
The use of renewable energies in inner city locations is mostly linked to higher costs andconsidered as problematic. The aim of this project was to optimize (cost and energy) heating (and where required, cooling) using geothermic and photovoltaic for an urban, densely-built development area. With the project´s findings it will be easier to ecologically and economically plan the use of renewable energies especially in urban areas.
ÖKO-OPT-AKTIV - Optimised control and operating behaviour of thermally activated buildings in future urban districts
Development and simulation of scalable, distributed control strategies for the use of the storage effect of thermally activated components in buildings of future city districts for their energy supply by an energy centre.
DALEC - Day- and Artificial Light with Energy Calculation
In the course of DALEC an online concept evaluation tool for architects, building engineers, lighting designers and building owners was developed. Although easy to use, the software accounts for the complex thermal and light processes in buildings and allows a simple evaluation of heating, cooling and electric lighting loads. Not only energy, but also user behavior were considered (e.g. in terms of glare protection) and visual and thermal comfort were evaluated. This novel and innovative, holistic approach makes sustainable and energy efficient building design possible for new buildings as well as refurbishment.
An innovative approach for facades with optimised noise protection and natural ventilation
The aim of this project was to advance the state of the art in the engineering of double-leaf building facades that facilitate natural ventilation while providing sufficient sound insulation. Realization of natural (window) ventilation is in some instances difficult due to a number of factors. Thereby, noise pollution (especially traffic noise) plays an important role. To address these issues, the project explored innovative solutions in terms of facade constructions for concurrent natural ventilation and noise control.
Indicators for urban areas – for construction, operation and mobility in climate-friendly areas
Development and coordination of indicators for energy and ecological evaluations of urban areas based on the Swiss 2000-Watt certification system. The results will be used for the development of a quality assurance system for urban areas similar to the klimaaktiv declaration for buildings and the e5 certification for communities.
Photonic Cooling – Efficient cooling of buildings through the use of photonic
Within the scope of the project a photonic cooling approach was investigated and evaluated in terms of feasibility and cost efficiency for building applications. In particular cost-efficient photonic surfaces and concepts were investigated which need to have a high reflectivity in of the incident solar radiation (>97%) and a high emission coefficient within the spectral range of 8 – 13 micrometer in order to enable the emission of heat into the sky.
Sol4City - Integrated solar supply concepts for climate-neutral buildings for the "city of the future"
Intelligent technology coupling to achieve high solar coverage of the buildings (multi-storey residential building) heat and electricity demand. At the end of the project, integrated energy supply concepts for multi-storey residential buildings based on high network interaction and flexibility potential, maximum surface efficiency of conversion technologies on site and high economic competitiveness are available for the broad applicability in the "City of the Future".
InnoGOK – Investigation of the energetic and ecological usability of solar radiation on urban spaces and paths
Examination of the suitability of street space or other paved or not paved surfaces in urban areas for promoting renewable heat from solar radiation. Thus offers a high potential for increasing energy efficiency and conserving resources in urban contexts. Besides, the dissipation of heat from large solar-heated surfaces promises to prevent urban heat islands.
CiQuSo - City Quarters with optimised solar hybrid heating and cooling systems
The project CiQuSo aimed to develop, evaluate and optimize concepts for solar energy systems to provide energy for buildings and cities. The applicability of the developed methods and concepts were shown as an example at Itzling, a part of Salzburg city.
SolCalc: Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps
Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps
Cooling LEC - Energy-flexible buildings by controlling cooling systems via unidirectional communication in local energy communities
As a result of climate change and the rise in temperature, especially due to the increase in active cooling systems, especially at low-voltage level, new challenges are being posed to the electricity system (in particular to the distribution network). Due to the high electrical input of active cooling units and the high density of plants, which are sometimes operated uncoordinated and at unfavorable times, leads to peak consumption in the system. The project Cooling LEC therefore has as its overall objective the development and demonstration of a central control / intelligence of decentralized active cooling systems by further developing the unidirectional communication of ripple control systems to create energy-flexible buildings in the sense of the new approach of "Local Energy Communities" by creating a "special tariff". Ripple control systems have been established for many decades and are available and proven by all energy suppliers. The upscaling potential is very big.
OptiMAS - Optimization of building energy efficiency through model-based energy flow analysis with non-invasive sensors
Using a model-based energy flow analysis supported by non-invasive sensor technologies OptiMAS investigated how to monitor, analyze and optimize existing buildings independent of the installed HVAC systems and automation components. With the OptiMAS approach the optimization potential of individual buildings up to entire areas can be detected, located and tapped by adjustment of system parameters to ensure highest energy and resource efficiency.
GEMA – Assessment of the performance of energy-efficient demonstration buildings
In GEMA, the project team will study and analyse the energy consumption of at least 10 commercial and residential buildings in Austria, which include innovative technologies or concepts for minimising their energy requirements. The results will allow for the potential optimal performance in terms of energy, environmental and social indicators of buildings in future construction projects.
Energy-storage concrete: Thermal Component Activation

This planning guide provides information on the option of solely heating and cooling small-volume residential buildings by means of thermal component activation (TCA). Concrete instructions on the planning of residential buildings with thermally-activated ceilings are also provided.
Felix Friembichler, Simon Handler, Klaus Krec, Harald Kuster
Herausgeber: BMVIT
Englisch, 122 Seiten
Downloads zur Publikation
PEAR – Test facility for energy efficient automation and control of buildings
The energy demand calculated in the design phase often differs from measured values in the actual building operation. This projects reviews building automation and operation by presenting a solution how to assess energy efficiency of control strategies in the fields of air conditioning systems, concrete core activation and free cooling. The results are implemented in the demonstration building "Post am Rochus".
ARIS - Application of non-linear control engineering and implementation of intelligent sensor systems for the improvements of energy efficiency in the building sector
The major goal of the project was the development of innovative control concepts for controlling and optimizing heating, cooling and ventilation systems (HVAC) as well as building loads. The implementation of advanced, energy efficient non-linear control techniques in building management systems is supported by new sensor technologies that are applied to building and energy systems in order to improve their energy-efficient operation.
SaLüH! Renovation of multi-family houses with small apartments, low-cost technical solutions for ventilation, heating and hot water
New innovative concepts for heating and ventilation were investigated. Very compact heat pumps are developed in such a way that it will be possible to integrate these units into the window parapet or into a prefabricated timber façade.