Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Klimaneutrale Stadt

Climate pioneer city Salzburg

The aim is to draw up a master plan to achieve climate neutrality for the city of Salzburg by 2040. Together with stakeholders, development and urban planning processes can be analyzed, targets set and the necessary resolutions obtained. The exchange with the other pioneering cities is intended to ensure the broadest possible exchange of knowledge and to exploit synergies.

Stadt der Zukunft

scaleFLEX - Scalable method for optimizing the energy flexibility of districts

Development of a decentrally organized automation method for improving the demand-side flexibility options of buildings and districts. The utilized data-driven algorithm promise high scalability and therefore low installation and operating costs. The developed method will be validated using different building types (high-tech office buildings, low-tech office buildings, residential buildings).

Haus der Zukunft

Energy-Sponge-Bruck (Energieschwamm Bruck an der Mur)

The aim of the exploration-study for the urban region Bruck/Oberaich "Energieschwamm Bruck" or "Energy-Sponge-Bruck" was to establish clear and stringent basics for a flexible development of the future energy system. Therefore an energy development concept as well as a cadaster for short-term implementation measures had been applied. The structured, Bruck-based approach acts as framework for a general energy-conception-method, valid for small and medium urban regions with 10,000 to 20,000 inhabitants.

Stadt der Zukunft

GameOpSys - Gamification for optimizing the energy consumption of buildings and higher-level systems

The central goal is the development of a mobile application that enables the energy optimization and planning of buildings, neighborhoods and higher-level energy systems through the participation of the user and the user as a new source of data and information. The development of the application is strongly transdisciplinary and integrates mathematical methods of simulation and optimization as well as psychological aspects of user behavior in order to develop new business models and open up new markets.

Haus der Zukunft

R-Bau - Development of a replicable deconstruction strategy for residential buildings to force the recovery-oriented dismantling

The aim of the project was to develop a replicable deconstruction strategy for residential buildings to force the recovery-oriented dismantling. The key aspects of the project are the development of standardized building models in order to analyse the recovery-oriented dismantling process, the design of a deconstruction catalogue and the transfer of the project findings to refurbishment, design and erecting of residential buildings.

Haus der Zukunft

Stakeholder process of the initiative "Reference architecture for secure Smart Grids in Austria"

The project worked out the development of a smart grids reference architecture for Austria under involvement of all actors. Based on technological-scientific elements a process which met the requirements of stakeholders like operators of infrastructure, industry and also public agencies had been worked out to achieve nationally accepted and internationally orientated reference architecture.

Stadt der Zukunft

SYSPEQ - Systemische Lösung zum Betrieb von Plusenergiequartieren

Full-scale planning concepts for positive energy districts (PEDs) and their operation as energy communities (ECs). The focus is on the implementation in the existing building stock, especially in the area of social/non-profit housing. Financing options for renewable generation units, planning and operation of a PED (especially as an EC), marketing opportunities for surplus electricity and the development of an information and networking platform are part of this project. A special highlight is the practical proof-of-concept in Fuchsenloch, which is a social housing quarter of Sozialbau.

Haus der Zukunft

P2H-Pot - Potentials, economic feasibility and system solutions for Power-to-Heat

P2H-Pot has identified economically feasible potentials for Power-to-Heat (P2H) in urban regions. The suitability of different technical system configurations were investigated using thermodynamic simulation and considering experiences from Scandinavian cases. The assessment of short, medium and long term relevance and economic feasibility of P2H were accomplished by simulating model-based scenarios up to 2050 of the Austrian and German electricity and heat market. In cooperation with a district heating company three case studies have been carried out.

Nachhaltig Wirtschaften

ISEC 2024 - International Sustainable Energy Conference

10. – 11. April 2024
Messecongress Graz, Austria

The focus of ISEC 2024 will be on how we can achieve energy sovereignty within a time horizon dictated by climate change and defined by politics.

Stadt der Zukunft

metaTGA - Metadata and process models for open BIM in building service engineering

The objective of this research project is to design a methodology for developing data and process models and to apply them by modelling selected MEP systems. A particular but not exclusive focus is put on the renewable heating technologies, e.g. heat pumps, solar heat and biomass as well as ventilation systems. The data and process models developed in this research project will be scientifically evaluated in two pilot projects. The models, the approaches taken during development and the project team’s experiences with the pilot application of the models will be disseminated openly.

Stadt der Zukunft

RAARA - Residential Area Augmented Reality Acoustics

Populations with high exposure to noise emissions will generally agree: Noise means trouble. The aim of project RAARA is to develop a simple, intuitive albeit accurate method for reducing noise imissions in urban areas. This method involves placing a noise-source into its planned real-world destination prior to actual installation, by means of augmented reality. The ensuing sound-imissions are then made tangible by means of sound effects and coloured visualizations. This exceptional approach will facilitate planning for heating and cooling devices and thus reduce noise pollution in urban areas. This, in turn, can contribute to an increase in societal acceptance and investment in renewable energy.

Stadt der Zukunft

Energy Flexible Buildings – Potential and Performance

26th September 2017, 10.00 a.m.
Kuppelsaal TU Wien, Karlsplatz, 1040 Vienna

The aim of this workshop was to bring together international experts and the Austrian building and demand response community for know-how exchange and discussion on the topic of energy-flexibility in buildings and its role for smart grids. The focus was on thermal and electricity based flexibility potential of buildings and practical experience with first implementations and demonstrations.

Stadt der Zukunft

Sophokles - Solar shading lamellas with photovoltaic coating for climate-neutral, energy-efficient structures

Development of lightweight, strip-like photovoltaic modules that combine shading and emission-free power generation in one monolithic component. The size and module voltage of the photovoltaic blinds can be individually adapted to the conditions of the building. The core of the innovation is an interconnection concept for thin-film solar cells, with which the film-like photovoltaic material can be interconnected in series and in parallel as required.

Haus der Zukunft

FFF-TaliSys - Freeform Systems for Daylighting to be Integrated in a Façade and in a Skylight

In the course of the project FFF-TaliSys novel daylighting systems based on freeform surface technology were developed and implemented into functional models, thus, innovative systems that solve the contradictory requirements of daylighting systems.

Stadt der Zukunft

SOFC4City - SOFC-waste heat utilization for buildings and industry

In this project the application of a solid oxide fuel cell (SOFC) for energy supply (heat and power) of urban areas will be investigated. Due to the high temperature level of the produced heat it would be possible to use this heat for the energy supply of different heat and power consumers (residential buildings, industrial plants, etc.). One aim is to provide the SOFC-heat at several temperature levels in order to establish the advantages of the fuel cell. On the one hand the legal and market-based conditions will be evaluated, on the other hand the technological feasibility will be scoured by the use of CFD-simulation of the heat production.

Haus der Zukunft

THERM-opti-BALCONY: Thermal Optimized Renovation of Balconies

Pre-cast cantilever balconies represent a particular problem in the thermal renovation of buildings. The central goal of this project is the development of practical and cost-effective mounting solutions for the thermally decoupled reconstruction of balconies on building frontages and achieving a significant increase in the energy performance of the thermal renovation measure.

Stadt der Zukunft

FEELings - User Feedback for Energy Efficiency in Buildings

User behavior is a key factor for the energy consumption and the actual energetic performance of a building. A new type of user feedback system will be investigated in this research project. Users provide feedback on the sensed room quality. The data obtained by the feedback system are used to optimize settings of building services in order to improve the energy efficiency and the comfort in the building. A basic proof of concept of this system will be undertaken by means of two use cases.

Stadt der Zukunft

BIOCOOL - Bio-inspired Surfaces for the Evaporation Cooling of Building Envelopes

The BIOCOOL project will explore the transfer of morphological principles from leaves of deciduous trees, with optimized thermal properties and efficiency of evaporation to the parametric design of form-optimized architectural ceramic surfaces for climate control of building envelopes. The study paves the way for an industrial research project.

Stadt der Zukunft

FIVA - Window prototypes with integrated vacuum glazing

This project targets the further development of windows with integrated vacuum glazing. Such glass products regularly feature a very low Ug-value, and their dimension is in comparison to insulation glass thin and light. As such, these products offer a new alternative for highly-insulating window constructions, and thus also for energy-efficiency measures in buildings. The project is based on the findings of a previous exploratory project (MOTIVE) and focuses on the construction of functional prototypes of vacuum glass windows together with business partners.

Stadt der Zukunft

Cooling LEC - Energy-flexible buildings by controlling cooling systems via unidirectional communication in local energy communities

As a result of climate change and the rise in temperature, especially due to the increase in active cooling systems, especially at low-voltage level, new challenges are being posed to the electricity system (in particular to the distribution network). Due to the high electrical input of active cooling units and the high density of plants, which are sometimes operated uncoordinated and at unfavorable times, leads to peak consumption in the system. The project Cooling LEC therefore has as its overall objective the development and demonstration of a central control / intelligence of decentralized active cooling systems by further developing the unidirectional communication of ripple control systems to create energy-flexible buildings in the sense of the new approach of "Local Energy Communities" by creating a "special tariff". Ripple control systems have been established for many decades and are available and proven by all energy suppliers. The upscaling potential is very big.