Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Stadt der Zukunft

Vilipa - Visible light based Person and Group Detection in existing buildings

Evaluation of the technical and economic feasibility of an occupancy detection system based on the technology of visible light sensing, which, in combination with the building management system, should reduce the energy consumption of buildings. The goal is to implement low-tech/low-complexity solutions that can distinguish between individuals and groups based solely on the detection of visible light reflections.

Haus der Zukunft

Development of modular parts for clay-passive houses

Development of extensive storey-high modular parts made of renewable primary products (wood, straw, hemp) for clay-passive houses.

Stadt der Zukunft

ESSBAR – Edible balcony gardens for retrofit – Vertical Greening Technologies for the City

Demonstration of an affordable, resource-saving and innovative balcony system with integrated edible vertical gardens and rainwater management. Considering the needs of residents for green outdoor spaces and the active participation of residents are an important part of the project.

Klimaneutrale Stadt

PersonAI - User-Centered AI-based energy services built on personal preference models

Conduct a large-scale, long-term study with 40-50 people to create personal comfort profiles to increase comfort in buildings. The personal comfort profiles will then be fed back into the building control system as input variables in a proof-of-concept.

Haus der Zukunft

ProKlim+ - Use of Model Predictive Control to optimize solar power consumption in case of increased energy efficiency.

Using weather forecast for building automation can help improving the energy efficiency of buildings and, thus, saving energy. In the project ProKlim+ the forecast of solar radiation will be used to optimize the building automation to satisfy the needs of the building users, and at the same time to minimize the energy demand on the one hand and to maximize the consumption of self-produced energy on the other hand.

Stadt der Zukunft

INN'FIT4UM - Innsbruck "Fit4UrbanMission" - climate neutral Innsbruck 2030

Cities are the place where decarbonization strategies for energy, transport and buildings intersect. A few years ago, the municipality of Innsbruck set up a Smart City Group consisting of staff from the municipality, IIG, IKB and IVB to address this challenge. The goal of INN'F4UM is to develop a step-by-step plan to achieve climate neutrality for the city by 2030, building on an up-to-date representation of energy and resource flows together with the University of Innsbruck.

Haus der Zukunft

Solar Adsorption cooling system of residential and office buildings (SunSorber)

In the on hand project an adsorber/desorber for a solar operated/district heating operated one-level adsorption chiller with water as cooling agent and silica gel as adsorbent agent will be planned for a low range of performance (2 to 50 kW refrigerating capacity). It will be implemented as a test-/pilot plant. Hence these two substances are an alternative to the HFCKW´s cooling agents that are used nowadays.

Haus der Zukunft

Innovative regulation of thermal solar collectors

Research and development of the possibility of a "sensorless" regulation for thermal solar systems

Haus der Zukunft

Know-How-Plus - Options and constraints of building renovation towards plus energy building standard

Aim of this research project is to identify the realizable reduction potential of energy consumption and CO2 emissions by refurbishment of the Austrian building stock towards plus energy building standard. Furthermore a construction-oriented manual will be supplied for interdisciplinary planning.

Stadt der Zukunft

Reallabor Weizplus - Reallabor climate-neutral region Weizplus

Clarification of relevant questions for the potential establishment of a real lab in the region of Weizplus, which aims at a 100% supply of the region with renewable energies by 2030. The content-related technological focus of the activities of the future real lab is on all energy-relevant sectors (heating, electricity, cooling) applied to the focal points of energy efficiency and replacement of fossil energy in buildings, in trade and industry as well as mobility.

Haus der Zukunft

LifeCycle Tower - Energy efficient prefabricated multi-storey timber houses

Based on the results of previous research projects, the project at hand deals with the development of a wooden prefabricated module construction for energy efficient office buildings with up to 20 storeys. This sustainable system ensures cost certainty through the whole life cycle of the building.

Stadt der Zukunft

DIM4Energy - Digital Information Models for the Planning and Optimization of Buildings and Urban Energy Infrastructure

Digital information models (DIM) are playing an increasingly important role in urban planning and decision-making processes, from individual buildings (BIM) to urban information models (UIM). For the planning and optimal operation of plus-energy neighborhoods, valuable information could be obtained from these existing models, provided the appropriate data sources and associated software tools are properly linked.

Stadt der Zukunft

CO2 neuBau - The CO2-neutral Construction Site: a Contribution to the Climate Protection by the Austrian Construction Industry

Identification of all direct and indirect CO2, respectively, GHG emissions generated at construction sites. Analysis of the framework conditions and technologies towards demonstrating the options for their control. In parallel, added values, such as cost-benefit advantages of a CO2-neutral construction site, were outlined and quantified.

Stadt der Zukunft

F4WM - Fit4WienerMission

Preparation for the EU Urban Mission by updating goals and strategies (Smart City Wien Framework strategy, Climate-Roadmap), developing a manual for climate-neutral Viennese neighbourhoods and concepts for the participation of citizens (Climate Citizens' Council) and businesses (Climate Agreements), as well as a city-internal capacity and structural planning.

Stadt der Zukunft

EM Städte - Monitoring and evaluation of urban energy flows

In the first phase of the project, the data source of the energy statistics will be analyzed. Based on the findings of the analysis a methodology on build up regional energy balances will be developed. The methodology will be integrated into the Senflusk tool and tested on five reference cities in Austria.

Stadt der Zukunft

FiTNeS - Facade integrated modular Split-heat pump for new buildings and refurbishment

The goal of FitNeS was the development of modular split heat pumps with compact and silent façade-integrated outdoor units for heating and domestic hot water preparation (and optionally cooling in combination with PV). The outstanding features of the concept are a modular design with a high degree of prefabrication and representing a visually and architectonically attractive, economic and sustainable solution for both new constructions and renovations. One of the main development goals is the minimization of sound emissions by means of optimized flow control.

Haus der Zukunft

Acceptance and improvement of low-energy-house components as a mutual learning process for users and producers

A social scientific investigation of acceptance and dissemination strategies for controlled ventilation systems with waste heat recovery and a joint heating system in low energy and passive houses.

Haus der Zukunft

Oekosan 09 - International symposium for high-quality energetic renovation of large-scale buildings

From October 7 to 9, 2009 the AEE INTEC has organized an international symposium "Ökosan 09". The emphasis of the symposium was the communication of (partial) results of running and closed cooperation projects by leading technical experts dealing with the retrofit of large-scale buildings.

Stadt der Zukunft

CoolAIR - Predictive control of natural nighttime ventilation and daylight-optimized shading for passive building cooling

Natural nighttime ventilation and daylight-optimized shadowing are high potential approaches to efficiently and economical cool buildings. Nevertheless, the full potential cannot be acquired, since, if at all, such behavior is manually initiated by users. Goal of this project is the development of an automated, self-learning system that can assess the full cooling capabilities and establish an alternative to conventional air conditioning systems.

Haus der Zukunft

Evaluation of temperature differentiation on a room-by-room basis in passive house apartments

In the passive house Utendorfgasse a room–by-room temperature control was installed in 11 apartments. The experiences were evaluated from a technological and from a sociological point of view.