Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Haus der Zukunft

ProKlim+ - Use of Model Predictive Control to optimize solar power consumption in case of increased energy efficiency.

Using weather forecast for building automation can help improving the energy efficiency of buildings and, thus, saving energy. In the project ProKlim+ the forecast of solar radiation will be used to optimize the building automation to satisfy the needs of the building users, and at the same time to minimize the energy demand on the one hand and to maximize the consumption of self-produced energy on the other hand.

Haus der Zukunft

Sorption cooling and air dehumidification device

Solar-assisted air-conditioning in combination with comfortable controlled ventilation systems soon possible and affordably for building owners. With a new part DEC-systems should become acceptance.

Stadt der Zukunft

CoolAIR - Predictive control of natural nighttime ventilation and daylight-optimized shading for passive building cooling

Natural nighttime ventilation and daylight-optimized shadowing are high potential approaches to efficiently and economical cool buildings. Nevertheless, the full potential cannot be acquired, since, if at all, such behavior is manually initiated by users. Goal of this project is the development of an automated, self-learning system that can assess the full cooling capabilities and establish an alternative to conventional air conditioning systems.

Fabrik der Zukunft

CPC-lightweight construction collector

On the basis of our relieable CPC-collector SOLARFOCUS S1 we develop the CPC-lightweight construction collector to get more material efficiency and maximum output of solar hightemperature energy.

Stadt der Zukunft

Energy-Sponge: The Building as an Energy-Sponge - Electricity In - Heat Out

Innovative, dynamic control concepts had been developed which enable (air) heat pumps in combination with PV- or renewable grid electricity to use the building mass of a multi-familiy house as heat storage. User acceptance had been evaluated and possible business models had been developed.

Haus der Zukunft

Development of a new generation of grid-connected PV inverters

Improvement of operational parameters (efficiency, quality of current waveform, reduced size and weight) and reduction of manufacturing costs

Haus der Zukunft

smartEXT - extended application boundaries for proven passive house technology

The present study aims to explore the application options for compact units (ventilation devices including micro heat pumps, developed for passive houses) in low energy buildings. Compact ventilation units for heat recovery, heating and domestic hot water shall bear the basic heating load, whereas peak loads shall be covered by newly-developed auxiliary heating equipment combined with intelligent control algorithms. This allows increased energy efficiency as well as cost effectiveness together with higher living quality and lower ecological load.

Haus der Zukunft

Syn[En]ergy: Development of Potential Synergy Effects between the Interdependency of Urban Planning goals and Photovoltaic Usage on Open Urban Landscapes

Open spaces such as parking lots, brownfields and some categories of recreation areas offer an underutilised potential for photovoltaics in urban regions. In the course of Syn[En]ergy an inter- and transdisciplinary approach potential synergies and conflicts with other use demands were investigated, a typology and practical solutions for selected areas with regard to requirements from economy, urban planning and design, legal as well social aspects developed, and then evaluated by stakeholders from enterprises, administration and the general public.

Stadt der Zukunft

mAIntenance - Investigation of AI supported maintenance and energy management

Optimized & reliable operation of Heating, Ventilation and Air Conditioning (HVAC) systems in terms of maintenance and energy management, using predictive, data-based & self-learning error detection. Conceptual design and prototype implementation of an AI (Artificial Intelligence) tool for automated data analysis and recommendations for technical building operators.

Stadt der Zukunft

MehrWertStrom 2030 - PV-Community system - Exploring a participatory pilot project with regional added value for structurally weak regions

The "MehrWertStrom 2030" project analysed the legal, technical, organizational and economic feasibility of PV community joint venture facilities on multi-party buildings including the added value for structurally weak regions and developed innovative solutions related to organization, financing and realization.

Stadt der Zukunft

Beyond - Virtual Reality enabled energy services for smart energy systems

Collaborative R&D project to develop the next generation energy services with the interplay of various technologies: Virtual Reality (VR), machine learning, physical simulation and Internet of Things (IoT) platforms.

Stadt der Zukunft

Urban Mining - Energy and resource savings due to urban mining

The use of natural resources in long-lived products and buildings has led to the build-up of enormous urban material stocks. The present project analyses the potential of these urban mines to increase the resource efficiency of modern cities.

Stadt der Zukunft

fit4power2heat

The integration of heat pumps can increase the cost effectiveness of existing heating networks and counter the high costs for the expansion of power grids at the same time. Aim of the project is to develop innovative business models for small and medium municipal heating networks with focus on synergies between heat and power market. Main focus is a heat pump pooling for several heat grids.

Stadt der Zukunft

VERTICAL FARMING - Investigation on requirements of a Vertical Farm-prototype development for crop plant production

In the center of interest stands the investigation of fundamental principles for a new building typology – the Vertical Farm. Urban vertical food production can contribute to more energy efficient cities by concurrently reducing land use. Substantial influencing factors to achieve these goals are intended to be revealed.

Haus der Zukunft

(energy central 400+) Marketable energy central from 400 kW with innovative, simple electricity conversion for residential building, public utility and commercial objects

Development of a marketable, decentralised "energy central" on a scale from 400 kW for the generation of electricity, heating (and cooling) for residential building, public utility and commercial objects, with a broad variety of applicable fuels on the base of regionally available biogenous residual materials.

Stadt der Zukunft

SPACE4free - Retrofitting souterrain areas in 19th century townhouses to apartments with high quality of life and low energy consumption

Planning of durable and damage-free apartments with high quality of life and low energy consumption in moisture exposed souterrain areas of 19th century townhouses. Using innovative ventilation control systems comfortable room climate will be created. Additionally the tolerance of different types of use is ensured. A planning tool enables the scaling of the findings and thus the applicability to various planning situations.

Haus der Zukunft

S - House

Innovative Use of Renewable Resources demonstrated by means of an Office and Exhibition Building

Haus der Zukunft

oh 456 - Plus Energy Office Building oh456

The "oh456 Plus Energy Office Building" with its adjoining small hydro-electric power plant shall serve as a prototype for testing innovative technologies and also provide the companies residing in the building integral home surroundings comprising common break and leisure facilities. A wide public will have access to the building which will be a location for the most diverse events, exhibitions and lectures on climate protection as well as being a joint promotional platform for sustainable construction.

Stadt der Zukunft

OptiMAS - Optimization of building energy efficiency through model-based energy flow analysis with non-invasive sensors

Using a model-based energy flow analysis supported by non-invasive sensor technologies OptiMAS investigated how to monitor, analyze and optimize existing buildings independent of the installed HVAC systems and automation components. With the OptiMAS approach the optimization potential of individual buildings up to entire areas can be detected, located and tapped by adjustment of system parameters to ensure highest energy and resource efficiency.

Haus der Zukunft

COP5+ - Further development of a heat- and cooling system with seasonal heat storage at the example of Central Europe´s biggest geothermal depth drilling field

The aim was to increase the overall energy efficiency of Plus-Energy-Houses by making the heat excess of summer available for use in winter. This was carried out by improvements of the technology seasonal heat storage to an intelligent overall system. The biggest geothermal depth drilling field in Central Europe has been established.