Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Energiesysteme der Zukunft

Development of an innovative service system to increase the efficiency of public street lighting in municipalities.

The aim is to develope a innovative street lighting service system in order to increase energy efficiency: quick-checks.energy monitoring.best-practise-catalogue.benchmarking.excursions.information.training.info-point.attendant process.congress.preparation efficient street lighting model region

Nachhaltig Wirtschaften

Market survey of energy storage technologies in Austria (MSSP2020)

Stationary battery storage devices for the maximisation of the private consumption in PV-systems, large heat storage for local and district heating systems, thermal activation of buildings and the area of innovative storage systems have been chosen for the first market survey within this project. The historical market diffusion of these technologies is surveyed empirically and documented up to 2020.

Stadt der Zukunft

BIM4BEMS - Building Information Modeling for Building Energy Management Systems

BIM4BEMS explores use cases that represent the usage of building information models (BIM) in combination with building energy management systems (BEMS) during operation. This enables the interaction between BIM and building management systems (BMS) which improves the analysis and visualization of inefficiencies in facilities.

Haus der Zukunft

smart façade - energy potential of adaptive façade systems

A specially developed simulation model is employed to ascertain the energetic potential of adaptive façade systems. The dynamic behavior of the physical properties of the adaptive façade system reacts to both internal and external changing conditions. The goal was the development of an adaptive façade, which helps provide maximum comfort for the building occupants with minimum energy consumption.

Internationale Energieagentur (IEA)

IEA ISGAN Annex 5: Smart Grids International Research Facility Network (SIRFN). (Working period 2021-2022)

The Smart Grids International Research Facility Network (SIRFN) aims at improving the implementation of Smart Grids technologies by collaboration between smart grid testing facilities, test beds, and large-scale demonstrations. In the working period 2021-2022, the focus will be laid on the development of extended interoperability tests for decentralised energy resources and micro grids.

Internationale Energieagentur (IEA)

IEA ISGAN Annex 5: Smart Grids International Research Facility Network (SIRFN). (Working period 2013-2018)

The Smart Grids International Research Facility Network (SIRFN) aims at improving the implementation of Smart Grids technologies by collaboration between smart grid testing facilities, test beds, and large-scale demonstrations. By active participation, Austria’s position and leading role on the forefront of international Smart Grids development has been strengthened.

Energiesysteme der Zukunft

Refrigerating plants in hotel and catering industry

To the frequent uses of refrigerating plants in hotel and catering industry was not paid a lot of attention in the way of energy efficiency so far. We are talking about plug-in cooling units and custom-made cooling equipment. Aim of the project: finding out the manner and amount of refrigeration usage, as well as the estimation of energy savings potential and measures, especially for custom-made cooling equipment.

Haus der Zukunft

PESI - Paradigm shift in urban energy systems through synergies with industry

Analysis of different options for the use of industrial surplus energies of various shapes (waste heat, waste water, waste) and renewable energy sources in the industrial sector (e.g. solar panels on roof surfaces) in adjacent urban areas, which act as an "energy sponge". Based on real consumption and availability data, a simulation model was created and opportunities for synergies were documented.

Haus der Zukunft

PRoBateS - Potentials of planning and building legislation for energetically sustainable city structures

The aims of this project are to analyse planning and building legislation in order to identify barriers, potentials and suitable courses of action for energy-orientated policy measures. Specific policy recommendations are developed with a view to increasing the sustainability of energy-related city structures. For these purposes the project combines two different disciplinary approaches: a thorough legal analysis and a spatial structure and quantitative impact assessment.

Haus der Zukunft

InnoGOK – Investigation of the energetic and ecological usability of solar radiation on urban spaces and paths

Examination of the suitability of street space or other paved or not paved surfaces in urban areas for promoting renewable heat from solar radiation. Thus offers a high potential for increasing energy efficiency and conserving resources in urban contexts. Besides, the dissipation of heat from large solar-heated surfaces promises to prevent urban heat islands.

Internationale Energieagentur (IEA)

IEA ISGAN Annex 3: Benefit/Cost Analyses and Tools of Smart Grids

Together with experts from 11 countries, the EI-JKU has analysed cost-benefit models and developed proposals for their adaptation and further development. In the course of the work, the EI-JKU dealt in particular with two questions: how such an evaluation model can be adapted to Austrian conditions and which socio-economic factors influence the question of whether an end consumer emerges as a winner or loser from Smart Grid-based functionalities.

Internationale Energieagentur (IEA)

IEA ISGAN Annex 5: Smart Grids International Research Facility Network (SIRFN). (Working period 2019-2021)

The Smart Grids International Research Facility Network (SIRFN) aims at improving the implementation of Smart Grids technologies by collaboration between smart grid testing facilities, test beds, and large-scale demonstrations. The focus during the working period 2019-2020 was laid on the implementation of extended interoperability tests and innovative laboratory testing methods for decentralised energy resources. By active participation, Austria’s position and leading role on the forefront of international Smart Grids development was strengthened.

Haus der Zukunft

Stakeholder process of the initiative "Reference architecture for secure Smart Grids in Austria"

The project worked out the development of a smart grids reference architecture for Austria under involvement of all actors. Based on technological-scientific elements a process which met the requirements of stakeholders like operators of infrastructure, industry and also public agencies had been worked out to achieve nationally accepted and internationally orientated reference architecture.

Haus der Zukunft

Energy-Sponge-Bruck (Energieschwamm Bruck an der Mur)

The aim of the exploration-study for the urban region Bruck/Oberaich "Energieschwamm Bruck" or "Energy-Sponge-Bruck" was to establish clear and stringent basics for a flexible development of the future energy system. Therefore an energy development concept as well as a cadaster for short-term implementation measures had been applied. The structured, Bruck-based approach acts as framework for a general energy-conception-method, valid for small and medium urban regions with 10,000 to 20,000 inhabitants.

Haus der Zukunft

P2H-Pot - Potentials, economic feasibility and system solutions for Power-to-Heat

P2H-Pot has identified economically feasible potentials for Power-to-Heat (P2H) in urban regions. The suitability of different technical system configurations were investigated using thermodynamic simulation and considering experiences from Scandinavian cases. The assessment of short, medium and long term relevance and economic feasibility of P2H were accomplished by simulating model-based scenarios up to 2050 of the Austrian and German electricity and heat market. In cooperation with a district heating company three case studies have been carried out.

Haus der Zukunft

Passivhauswohnen³: Facility Management for Residential Property Developers: A Key to Optimizing the Reduction of Energy and Operation Costs

What soon will be considered "standard" in ecological building must be carried out by the property developer and accepted by the future user. Therefore, in order to assist a smooth implementation of the new passive housing technique and begin the corresponding feedback mechanisms, a specific KMU "quality and incentive model" should be launched. The interrelationship of this model is designed with the property developer as well as the user in mind and aims for lasting "behavior modification" in energy and operational expense consumption.