Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Haus der Zukunft

OPEN HEAT GRID - Open Heat Grids in urban hybrid systems

The primary research topic of OPEN HEAT GRID was to investigate the possibilities of enforcing the feed-in of industrial waste heat into existing district heating networks. The project results show that excess heat is not for free: despite minimal variable costs, the investment costs need to satisfy usual payback periods. The analysis shows that there is no need for a regulation in the sense of a feed-in obligation or market liberalization. However, from an economic point of view, information asymmetries exist, which may lead to irrational decisions.

Haus der Zukunft

urban pv+geotherm - Innovative concepts for the supply of large volume buildings/ quarters with PV and geothermal energy

The use of renewable energies in inner city locations is mostly linked to higher costs andconsidered as problematic. The aim of this project was to optimize (cost and energy) heating (and where required, cooling) using geothermic and photovoltaic for an urban, densely-built development area. With the project´s findings it will be easier to ecologically and economically plan the use of renewable energies especially in urban areas.

Haus der Zukunft

KELVIN - Reducing the urban heat island effect via improving the reflective properties of buildings and urban areas

The aim of this project was to estimate the potential to reduce urban heat islands via low-tech measures such as the variation of the surface albedo, using the City of Vienna as an example. The project has also assessed the energy savings and greenhouse gas emission reductions due to the decreased energy demand for cooling as a result of such measures.

Haus der Zukunft

Using buildings as energy storage - Monitoring project: Detached house H and detached house F Energy source wind power – Energy source solar power

Monitoring and comparison of performance of thermally activated building components in two similarly built, inhabited detached houses with different energy sources (wind and solar power). The functionality of energy supply through wind power or solar energy will be investigated as well as the verification of the practicability of self-regulating system control due to building temperature behaviour. The results provide an insight into the calculation assumptions, system control and feasibility of the smart grid technology.

Haus der Zukunft

HOTSPOTS - Holistic thermographic screening of urban physical objects at transient scales

HOTSPOTS enables new insights and perspectives for city development. According to the project idea innovations in acquisition and sensing as well as densification of geo-referenced city related data are supple­mented by novel processing chains in city data analytics. Driven by an integrated scientific approach we develop a novel method in the selec­tion, evaluation and prioritization of infrastructural city development measures which is directly derived from sensed data hence reducing the risk of ad-hoc decisions or lack in impact.

Haus der Zukunft

SynENERGY - Energy optimised settlement development by making use of synergies of energy efficiency, spatial planning and building culture

SynENERGY aims at an innovative, holistic approach to urban district optimization. The project targets a comprehensive analysis of the framework and urban development concept which includes not only optimisation of sustainable energy supply and use but also increased material flows (construction and disposal) at urban district level.

Haus der Zukunft

Manage_GeoCity - Development of a method for the coordinated management of geothermal energy in urban areas

Based on the urban region Graz a method had been developed for the coordinated use and management of shallow geothermal energy for heating and cooling as well as seasonal heat storage in urban regions. Ground water flow, different geologic conditions, heating and cooling demand, heat input from solar collectors and industrial waste heat and the possibilities of seasonal heat storage in the subsurface were considered.

Stadt der Zukunft

Indicators for urban areas – for construction, operation and mobility in climate-friendly areas

Development and coordination of indicators for energy and ecological evaluations of urban areas based on the Swiss 2000-Watt certification system. The results will be used for the development of a quality assurance system for urban areas similar to the klimaaktiv declaration for buildings and the e5 certification for communities.

Haus der Zukunft

EnergyCityConcepts - Methods and concepts for the implementation of sustainable energy systems in cities

Two concrete model regions (small city Gleisdorf and urban city quarter Salzburg-Schallmoos) will be developed and tested using new methodical approaches (interdisciplinary urban and regional energy planning, modeling and simulation). Therefore, it is aimed to substantiate scenarios and concepts for the implementation of defined targets on technical, ecological and economic criteria.

Haus der Zukunft

CityCalc - Calculation Tool for Energy-Efficiency in Urban Planning

To assess the energy performance of urban planning projects in early design stages with low input and evaluation effort within the project CityCalc, an easily applicable planning and evaluation tool has been developed.

Haus der Zukunft

Syn[En]ergy: Development of Potential Synergy Effects between the Interdependency of Urban Planning goals and Photovoltaic Usage on Open Urban Landscapes

Open spaces such as parking lots, brownfields and some categories of recreation areas offer an underutilised potential for photovoltaics in urban regions. In the course of Syn[En]ergy an inter- and transdisciplinary approach potential synergies and conflicts with other use demands were investigated, a typology and practical solutions for selected areas with regard to requirements from economy, urban planning and design, legal as well social aspects developed, and then evaluated by stakeholders from enterprises, administration and the general public.

Haus der Zukunft

TFlex - Temperature-flexibilisation in low-load operation of local district heating systems

Within the research project TFlex it was checked if the losses adherent to small district heating networks during low-load periods can be reduced. One possible solution is by deactivating the network and supplying the customers from previously charged decentralized storages. The optimal clustering of the storages and the possibility of solar-charging the storage were calculated with the aim of a guaranteed one-hundred percent heat supply.

Haus der Zukunft

Spatial Energy Planning for Smart City Quarters and Smart Regions

In the project ERP_hoch3 energy related policy research in three Austrian agglomerations (Vienna – Lower Austria, Graz – Styria and Vorderland-Feldkirch) has been done, scenarios of the current state and the target state have been modelled and calculated. The aim was to develop generic transferable recommendations for spatial energy planning in agglomerations.

Haus der Zukunft

CiQuSo - City Quarters with optimised solar hybrid heating and cooling systems

The project CiQuSo aimed to develop, evaluate and optimize concepts for solar energy systems to provide energy for buildings and cities. The applicability of the developed methods and concepts were shown as an example at Itzling, a part of Salzburg city.

Stadt der Zukunft

G2G – Innovation axis Graz-Gleisdorf

Development of testbeds and demonstration zones within already designated areas for urban development along the Graz-Gleisdorf Innovation-Axis with a focus on energy, integrated building technology, smart city-spaces, compact settlement structures, generational living, and ‘cities of short ways’. It will pay specific attention to intermodal mobility as well as ICT-based solutions.

Haus der Zukunft

SMARTIES - SMART Innovative Energy Services - Analysis of requirements of smart energy-services

The emerging development of smart grids provides market opportunities for new ICT-based services ("smart value-added services"). Economic and organizational barriers are foreseeable that could affect the establishment of business models and service providers (data formats, connectivity, controllability, etc.). In order to improve the chances especially for new and local actors, SMARTIES proactively tries to eliminate hindrances of innovation.

Haus der Zukunft

EDEN - Developement of a structured data and preparation documentation with a minimized error-proneness for energy performance cerificates.

Current energy performance certificates hold major flaws. Therefore, the presented research initiative aimed at the development of a standardized and easy-to-use, generic Input-Data-Documentation, which ensures the quality of energy certificates for all involved stakeholders. During the development, the documentation had been conducted and for a chosen sample of representative buildings, which is expected to demonstrate the high potential of such a development.

Stadt der Zukunft

BIM4BEMS - Building Information Modeling for Building Energy Management Systems

BIM4BEMS explores use cases that represent the usage of building information models (BIM) in combination with building energy management systems (BEMS) during operation. This enables the interaction between BIM and building management systems (BMS) which improves the analysis and visualization of inefficiencies in facilities.

Haus der Zukunft

smart façade - energy potential of adaptive façade systems

A specially developed simulation model is employed to ascertain the energetic potential of adaptive façade systems. The dynamic behavior of the physical properties of the adaptive façade system reacts to both internal and external changing conditions. The goal was the development of an adaptive façade, which helps provide maximum comfort for the building occupants with minimum energy consumption.

Haus der Zukunft

PESI - Paradigm shift in urban energy systems through synergies with industry

Analysis of different options for the use of industrial surplus energies of various shapes (waste heat, waste water, waste) and renewable energy sources in the industrial sector (e.g. solar panels on roof surfaces) in adjacent urban areas, which act as an "energy sponge". Based on real consumption and availability data, a simulation model was created and opportunities for synergies were documented.