Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"
EasyCell - Design optimization of PEM fuel cells for reducing auxilliaries and simplificating the material-management to facilitate the mass production
EasyCell - A common use of PEM fuel cells is not yet established. It is the aim of this project to optimize the design of PEM fuel cells (minimization of peripheral units, simplified handling of gases and the right design for mass production) to ease a widespread use of PEM fuel cells.
IEA IETS Task 21: Decarbonizing industrial systems in a circular economy framework (working period 2022 - 2024)
Energy and CO2 savings through circular economy, especially directly through carbon circularity (CCU), and resource and energy efficiency through industrial symbiosis are two key approaches to decarbonizing industry.
Raising efficiency by an optimized filters purification system using waste heat in metal industry
Purification and disposal of production effluents in waste water from metal manu¬fakturing processes is of economical and ecological importance for the Joh. Pengg AG. Econamical solutions for optimised purification of the filter textiles and the drying of the filter cake with waste heat have been found.
PROMISE - Production with solar energy. Study on the potential of thermal solar energy systems in trade and industry depending on the production processes
Documentation of realized plants for the use of thermal solar energy in trade and industry companies. Identification of production processes and branches, which have a demand for low-temperature heat. Determine the potential of solarthermal systems to provide low-temperature heat. Case studies for branches and processes with the highest mid-term potential for realization of a solar plant.
IEA IETS Task 15: Industrial Excess Heat Recovery (Phase 4)
Excess heat recovery plays a crucial role in reducing emissions in industry. Through strategic planning and efficient process integration, companies can improve their energy efficiency and significantly reduce their carbon footprint. Task XV facilitates the international exchange of experience and knowledge between different companies. This identifies best practices to promote the implementation of energy-efficient technologies in industry.
IEA-IETS Task 19: Electrification of Industry
The electrification of industry can make a major contribution to CO2 reduction. The aim of the task was a transfer of knowledge between the international and the state levels. Nationally, the aim was to spread and establish the topic of “electrification of industry” through stakeholder involvement. A comparison of electrification based on roadmaps and resources was carried out and, above all, systemic aspects of electrification of industry were analysed.
Recommendations for a consolidated Austrian research in the topic of "Smart Cities"
Based on a clear definition of the topics and focusing on energy relevant aspects the project will provide an overview on the present points of focus in research on "Smart Cities". Furthermore, future research topics will be defined and evaluated, and action plans for political stakeholders will be elaborated in the framework of two expert workshops.
Application of the Stirling cycle for environmentally compatible cooling - systems analysis
Conventional cooling has adverse effects on environment (eg. ozone depletion, global warming). One option for environmentally compatible cooling systems for near ambient temperatures (-10 to -50°C) is the Stirling cooler with environmental friendly process.
Instationarity as a limiting factor for the use of industrial waste heat in heating-networks
Industrial waste heat is predominantly instationary. Thus utilisation of industrial waste heat in district heating systems is constrained. A database and an evaluation methodology were developed to support increased utilisation of this heat source.
IEA Industrial Energy-Related Technologies and Systems (IETS TCP)
The Industrial Energy-Related Technology Programme (IETS) focuses on energy use in a broad range of industry sectors. It fosters international co-operation amongst relevant research strands, networking within and across industrial sectors, as well as exchange of information and knowledge between experts from industry, science and politics.
IEA IETS Task 17: Membrane processes in biorefineries (Working period 2024 - 2025)
Membrane technologies in biorefineries are essential for industrial development in order to enable the transition to a bio-based industry. Biomass as a raw material requires efficient processes. The IEA IETS Task XVII (24-26) project promotes the transfer of know-how between research, industry and membrane manufacturers for resource-efficient applications. The national task strengthens the Austrian research landscape through networking activities.
Development and optimization of a parabolic trough solar collector for generation of process heat for industrial processes
Development and optimization of a parabolic trough solar collector for generation of process heat for industrial processes. The operating performance and optimization possibilities of a prototype were evaluated and an improved prototype was tested with respect to its efficiency characteristics as well as in a small-scale application with a realistic load profile.
Raise in efficiency due to optimized waste heat management in heat intensive processes of the metal-working industry
This project drives at optimizing the energy input at the manufacturing process of oil tempered spring steel. This aim is met by investigating different options of waste heat recovery from industrial furnaces and heat insulation of heat treatment bathes. Besides, options of lead removal from anthracite will be listed.
IEA IETS Task 17: Membrane processes in biorefineries (Working period 2023 - 2025)
Biorefineries are essential for the transition from petroleum- to a biobased industry. The use of biomass as raw material for recyclable materials, chemicals and energy sources is essential and requires efficient and sustainable production processes. This project aims to strengthen national and international know-how transfer between research and development for membrane-based processes in biorefineries. The focus is on application, improvement and innovation in all aspects of membrane distillation.
Personal Power Plant
The application of PEM fuel cells is limited to certain singular products. The reason for this are the relatively high prices for the components of a PEM fuel cell. It is the aim of this project to fabricate the components of a PEM fuel cell by using mass production technologies such as injection moulding. In sequence this will lead to wide-spread applications of PEM fuel cells (personal-power-plant).
Development of miniaturized, ceramic high-temperature fuel-cell-components using resources-perserving mass-production processes
The application of nano scaled powder and powder injection moulding (PIM) for energy efficient co-sintering of miniaturized solid oxid fuel cells which can produce current and heat by using renewable raw materials.
IEA-IETS Annex 15: Industrial Excess Heat Recover (Phase 2)
In the framework of IEA IETS Annex 15 potentials of excess heat and technologies for their integration were collected from national research projects, bundled and elaborated on. This way, a broad knowledge base was built on experience gained in carrying out surveys for potential use of excess heat. Experiences with questionnaires, process integration tools and extrapolation of data using existing knowledge about the respective energy systems were exchanged. A process database with detailed process information could also be established, which can be used for further research activities. Also, in the area of policy instruments, recommendations for future measures to increase the use of surplus heat were derived on the basis of national contributions.
Increasing of the resources-efficiency by experimental optimisation of steam production and by reduction of production residues in a metal-processing factory
The project is based on the results of the currently running project "Use of waste heat and renewable energy sources in a metal-processing factory". In this project it was found, that nearly the half of the consumption of natural gas is needed for steam production. Based on calculations already carried out, it is planned to investigate experimentally the possibilities of increasing the resource-efficiency by lowering the steam temperature and by replacing steam by hot water. Further increasing of resource-efficiency shall be achieved by use of internal residues as an additional fuel in a solid fuel furnace.
Transfer of results of the program "Factory of Tomorrow" into the target groups of energy managers and energy consultants
Transfer of results of the program "Factory of Tomorrow" with respect to energy efficiency and increased adoption of renewable energy technologies into the target groups of internal energy managers and external energy consultants. The transfer activities include carrying out a one-day-seminar twice and the preparation of freely available training materials.
New solvents and processes for post-combustion CO2 capture
New and better solvents for CO2 absorption can reduce the costs of Carbon Capture and Storage significantly. Therefore, the ability to absorb CO2 and the vapour - liquid equilibrium curve of different new solvents will be determined in the laboratory and under real operating conditions at a power plant. Furthermore, the achievable CO2 removal efficiency of spray towers will also be investigated for different solvents.