Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Stadt der Zukunft

Energy Flexible Buildings – Potential and Performance

26th September 2017, 10.00 a.m.
Kuppelsaal TU Wien, Karlsplatz, 1040 Vienna

The aim of this workshop was to bring together international experts and the Austrian building and demand response community for know-how exchange and discussion on the topic of energy-flexibility in buildings and its role for smart grids. The focus was on thermal and electricity based flexibility potential of buildings and practical experience with first implementations and demonstrations.

Klimaneutrale Stadt

Climate neutral Wiener Neustadt 2040

Wiener Neustadt wants to develop its own vision and implementation strategy for climate neutrality by 2040 and develop it in four steps.

Stadt der Zukunft

metaTGA - Metadata and process models for open BIM in building service engineering

The objective of this research project is to design a methodology for developing data and process models and to apply them by modelling selected MEP systems. A particular but not exclusive focus is put on the renewable heating technologies, e.g. heat pumps, solar heat and biomass as well as ventilation systems. The data and process models developed in this research project will be scientifically evaluated in two pilot projects. The models, the approaches taken during development and the project team’s experiences with the pilot application of the models will be disseminated openly.

Stadt der Zukunft

RAARA - Residential Area Augmented Reality Acoustics

Populations with high exposure to noise emissions will generally agree: Noise means trouble. The aim of project RAARA is to develop a simple, intuitive albeit accurate method for reducing noise imissions in urban areas. This method involves placing a noise-source into its planned real-world destination prior to actual installation, by means of augmented reality. The ensuing sound-imissions are then made tangible by means of sound effects and coloured visualizations. This exceptional approach will facilitate planning for heating and cooling devices and thus reduce noise pollution in urban areas. This, in turn, can contribute to an increase in societal acceptance and investment in renewable energy.

Stadt der Zukunft

Sophokles - Solar shading lamellas with photovoltaic coating for climate-neutral, energy-efficient structures

Development of lightweight, strip-like photovoltaic modules that combine shading and emission-free power generation in one monolithic component. The size and module voltage of the photovoltaic blinds can be individually adapted to the conditions of the building. The core of the innovation is an interconnection concept for thin-film solar cells, with which the film-like photovoltaic material can be interconnected in series and in parallel as required.

Haus der Zukunft

FFF-TaliSys - Freeform Systems for Daylighting to be Integrated in a Façade and in a Skylight

In the course of the project FFF-TaliSys novel daylighting systems based on freeform surface technology were developed and implemented into functional models, thus, innovative systems that solve the contradictory requirements of daylighting systems.

Haus der Zukunft

THERM-opti-BALCONY: Thermal Optimized Renovation of Balconies

Pre-cast cantilever balconies represent a particular problem in the thermal renovation of buildings. The central goal of this project is the development of practical and cost-effective mounting solutions for the thermally decoupled reconstruction of balconies on building frontages and achieving a significant increase in the energy performance of the thermal renovation measure.

Stadt der Zukunft

FEELings - User Feedback for Energy Efficiency in Buildings

User behavior is a key factor for the energy consumption and the actual energetic performance of a building. A new type of user feedback system will be investigated in this research project. Users provide feedback on the sensed room quality. The data obtained by the feedback system are used to optimize settings of building services in order to improve the energy efficiency and the comfort in the building. A basic proof of concept of this system will be undertaken by means of two use cases.

Klimaneutrale Stadt

#EEG++ Digital Energy Communities Optimized

The project aims to develop an innovative energy system for plus-energy neighborhoods by integrating advanced photovoltaic installations, IoT technology, and energy communities to maximize the self-consumption of renewable energy while ensuring economic efficiency and user-centricity.

Stadt der Zukunft

SOFC4City - SOFC-waste heat utilization for buildings and industry

In this project the application of a solid oxide fuel cell (SOFC) for energy supply (heat and power) of urban areas will be investigated. Due to the high temperature level of the produced heat it would be possible to use this heat for the energy supply of different heat and power consumers (residential buildings, industrial plants, etc.). One aim is to provide the SOFC-heat at several temperature levels in order to establish the advantages of the fuel cell. On the one hand the legal and market-based conditions will be evaluated, on the other hand the technological feasibility will be scoured by the use of CFD-simulation of the heat production.

Stadt der Zukunft

BIOCOOL - Bio-inspired Surfaces for the Evaporation Cooling of Building Envelopes

The BIOCOOL project will explore the transfer of morphological principles from leaves of deciduous trees, with optimized thermal properties and efficiency of evaporation to the parametric design of form-optimized architectural ceramic surfaces for climate control of building envelopes. The study paves the way for an industrial research project.

Stadt der Zukunft

FIVA - Window prototypes with integrated vacuum glazing

This project targets the further development of windows with integrated vacuum glazing. Such glass products regularly feature a very low Ug-value, and their dimension is in comparison to insulation glass thin and light. As such, these products offer a new alternative for highly-insulating window constructions, and thus also for energy-efficiency measures in buildings. The project is based on the findings of a previous exploratory project (MOTIVE) and focuses on the construction of functional prototypes of vacuum glass windows together with business partners.

Stadt der Zukunft

Mission

Stadt der Zukunft

HEDWIG - Collection of measurement data to assess the impact of green buildings

HEDWIG aims for the assessment of effects from green roofs and facades on buildings by using monitoring data referring to microclimate and building physics. The objective is to define validated vegetation parameters and performance indicators on indoor and outdoor level and on microclimatic relevant street space level. Standardised indicators, evaluation and analysis procedures will be elaborated.

Stadt der Zukunft

Circular Standards: Development of a circular standard-detail-catalogue

In this research project, the technical design of standardized constructions details is the subject of investigation. Construction details will be researched, analyzed and evaluated and (further) developed or revised with regard to the parameter "recyclability". The expected result consists of circular-standard-details and the identification of problem areas and opportunities.

Klimaneutrale Stadt

Smart Dag - smart and climate-neutral renovation of the Dag Hammarskjöld housing estate

For a smart and sustainable renovation of the Dag Hammarskjöld housing estate in the city of Klagenfurt, a residential area from the 1950/1960s, the existing housing stock (buildings, green and open space, social structure) will be analysed and assessed based on the "Quartier &Wir" guide. The results are the basis for the launch of an architectural competition. The residents of the area who still live on site and the housing development agency of the department of the provincial Carinthian Government are involved in the feasibility study. The aim is to transfer the results of the study to other renovation projects and thus contribute to achieving the city of Klagenfurt's climate goals.

Stadt der Zukunft

Cooling LEC - Energy-flexible buildings by controlling cooling systems via unidirectional communication in local energy communities

As a result of climate change and the rise in temperature, especially due to the increase in active cooling systems, especially at low-voltage level, new challenges are being posed to the electricity system (in particular to the distribution network). Due to the high electrical input of active cooling units and the high density of plants, which are sometimes operated uncoordinated and at unfavorable times, leads to peak consumption in the system. The project Cooling LEC therefore has as its overall objective the development and demonstration of a central control / intelligence of decentralized active cooling systems by further developing the unidirectional communication of ripple control systems to create energy-flexible buildings in the sense of the new approach of "Local Energy Communities" by creating a "special tariff". Ripple control systems have been established for many decades and are available and proven by all energy suppliers. The upscaling potential is very big.

Stadt der Zukunft

GreEnergieausweis AT - Ways of integrating greenery into the Austrian Energy Certificate

Adaption of the calculation models in the energy certificate in such a way that the greening of buildings can be depicted as realistically as possible and assessment of the acceptance of implementation by relevant stakeholders.

Stadt der Zukunft

MEIDLINGER "L"-Participatory and scalable climate change adaptations in existing buildings at the intersection of public and private space

The project pursued an integral and interdisciplinary approach to climate change adaptation in existing buildings at the interface between public and private space. A scalable and multipliable model for Vienna and other cities had been developed.

Haus der Zukunft

GEMA – Assessment of the performance of energy-efficient demonstration buildings

In GEMA, the project team will study and analyse the energy consumption of at least 10 commercial and residential buildings in Austria, which include innovative technologies or concepts for minimising their energy requirements. The results will allow for the potential optimal performance in terms of energy, environmental and social indicators of buildings in future construction projects.