Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Haus der Zukunft

aspern Vienna´s Urban Lakeside subproject 8: Overall Project Management Landmark Project "aspern+"

The Overall Project Management of the "Leitprojekt" includes the handling and supervision of the sub-projects, the reporting to the programme management and additionally the preparation and distribution of relevant results. Beyond that the project management is responsible to highlight possible synergies within other projects and to - if necessary - include these within the next steps.

Stadt der Zukunft

BIMSavesEnergy - BIM-based planning-methods for the assurance of energy-efficiency in the building process

The Building Information Model (BIM) brings about fundamental changes in the planning and construction of buildings, as the common base makes it possible to work closely together across disciplines in construction projects. In this project, BIM-based planning methods were developed, which make the influence of planning decisions on energy efficiency quantifiable and controllable in the management process.

Stadt der Zukunft

MOTIVE – Modeling, Optimizing, and technical integration of Vacuum-Glazing-Elements

This project addressed the development of construction details for the implementation of vacuum glazing panels in new windows. In this project such constructions (form of frame, thermal bridges, structural aspects, mounting of glass) were explored via empirical experiments and via simulation. As an outcome, a mock-up was constructed, and the findings were documented in a comprehensive document.

Stadt der Zukunft

Sol4City - Integrated solar supply concepts for climate-neutral buildings for the "city of the future"

Intelligent technology coupling to achieve high solar coverage of the buildings (multi-storey residential building) heat and electricity demand. At the end of the project, integrated energy supply concepts for multi-storey residential buildings based on high network interaction and flexibility potential, maximum surface efficiency of conversion technologies on site and high economic competitiveness are available for the broad applicability in the "City of the Future".

Stadt der Zukunft

Probing for PV façade systems made of lightweight plastic modules with reversible fittings for new and old buildings (PV-FAS_light + easy)

Probing for a new, simple, cost-effective and building-integrated PV facade system made of plastic PV modules through initial investigations for fixing technology, for building physics, for fire protection and for electrical engineering concerning the usability, the areas of applicability and the yield and application potentialfor new buildings and for existing buildings.

Haus der Zukunft

Pallets never pall - Development of the Pallet House to series-production readiness

The winning project "Pallet House" of the EU-wide competition GAU:DI in 2007 consists of 800 (used) pallets. It has been exhibited in a scale 1:1 at the Biennale in Venice 2008 and has been developed for mass production within this project. Therefore, two exemplary scenarios were developed: (temporary) construction at Vienna's Urban Lakeside in Aspern and the construction of a low-cost building in South Africa.

Stadt der Zukunft

metaTGA - Metadata and process models for open BIM in building service engineering

The objective of this research project is to design a methodology for developing data and process models and to apply them by modelling selected MEP systems. A particular but not exclusive focus is put on the renewable heating technologies, e.g. heat pumps, solar heat and biomass as well as ventilation systems. The data and process models developed in this research project will be scientifically evaluated in two pilot projects. The models, the approaches taken during development and the project team’s experiences with the pilot application of the models will be disseminated openly.

Haus der Zukunft

Sol2Pump - High efficient combination of solar thermal plants, photovoltaic and heat pumps

Targeting a high level of decentralised energy supply on basis of renewable energy, the project analysed the possible combinations of solar thermal energy, photovoltaic and heat pumps. The project aimed to maximise the domestic energy supply due to utilisation of the building as short term energy storage. In addition to that, several optimisation measures had been developed. The impact on the energy supply and demand will be economically assessed through life cycle costing. On this basis, the potential load transfer and the use of this kind of systems had been evaluated in combination with smart grids.