Suchergebnisse
MehrWertStrom 2030 - PV-Community system - Exploring a participatory pilot project with regional added value for structurally weak regions
The "MehrWertStrom 2030" project analysed the legal, technical, organizational and economic feasibility of PV community joint venture facilities on multi-party buildings including the added value for structurally weak regions and developed innovative solutions related to organization, financing and realization.
BTTAB - Broad-based testing of energy-efficient demonstration buildings with thermally activated building components
Buildings with thermal building component activation that have not yet been researched in as many federal states and application categories as possible will be monitored, which will include operating data as well as the experiences of those involved. The aim of this study is to take a general look at the various applications of the thermal building component activation technology and to evaluate and compare the pilot projects with the help of suitable evaluation criteria.
NaNu3 - Parametric Planning for a Sustainable Roof (Blue, Grey and Green)
Demonstration of the feasibility and validation of a parametric model that can evaluate the practical and financial feasibility of the combined use of roof areas as well as its microclimate and environmental effectiveness at an early planning stage.
NETSE - User orientated development of technologies and services for energy communities
In the NETSE project the basics for the implementation of energy communities are developed. This includes the relevant technical equipment and interfaces, the development of a platform for the operation of an energy community as well as tools for the optimization of the technical setup and the operation of energy communities.
INReS - Integration of sustainable stormwater management tools into planning execution and management software (BIM)
Exploration to prepare and evaluate the applicability of an interactive web application to recommend appropriate stormwater management measures for existing and new buildings that allows for (1) BIM compatibility for object-based implementation and (2) simplified application in the form of the stormwater toolbox.
M-DAB - Digitise, analyse and sustainably manage the city's material resources
The research project investigates how digital technologies can support us in determining the existing and future material resources in construction qualitatively (building materials and their recycling) and quantitatively (quantities of building materials).
FiTNeS - Facade integrated modular Split-heat pump for new buildings and refurbishment
The goal of FitNeS was the development of modular split heat pumps with compact and silent façade-integrated outdoor units for heating and domestic hot water preparation (and optionally cooling in combination with PV). The outstanding features of the concept are a modular design with a high degree of prefabrication and representing a visually and architectonically attractive, economic and sustainable solution for both new constructions and renovations. One of the main development goals is the minimization of sound emissions by means of optimized flow control.
SPIDER - Subtraction as a measure to Preserve and Insulate historic Developments by Electric Robots
The purpose of this exploration is to unlock the potential of autonomous, data-driven robots that achieve improvements of the thermal building performance through air entrapments in a continuous process.
E.Vent – Efficient, cost-effective and low-maintenance central ventilation systems for multi-family housing – Design, operation and fire protection measures
Die Synopsis ist eine drei- bis vierzeilige Beschreibung des Projektinhalts alsErgänzung zum Titel und nähere Erläuterung des Projekts.
BONSEI! Optimal use of existing buildings – energy efficient implementation of renovation!
The project BONSEI! would like to support an energy efficient and socially acceptable densification of privately owned residential buildings in urban space and to develop a methodological basis for resource efficient urban areas. The results are used for the conception of an innovative service in order to provide a neutral consulting regarding private densification plans.
EPIKUR – Energy efficiency potential of intelligent measures of urban densification
The present research proposal focused on the possibility, implications and consequences of "inwards urban expansion" through densification of the existing urban tissue. In this context, densification is not only approached through known and common aspects of building regulations and guidelines, but in view of what is actually possible to achieve.
ENUMIS - Energetic effects of urban manufacturing in the city
The project examines the challenges of urban manufacturing (UM) from the energy perspective and shows opportunities arising from the implementation of UM concepts for the future design of sustainable energy systems for cities.
SYSPEQ - Systemische Lösung zum Betrieb von Plusenergiequartieren
Full-scale planning concepts for positive energy districts (PEDs) and their operation as energy communities (ECs). The focus is on the implementation in the existing building stock, especially in the area of social/non-profit housing. Financing options for renewable generation units, planning and operation of a PED (especially as an EC), marketing opportunities for surplus electricity and the development of an information and networking platform are part of this project. A special highlight is the practical proof-of-concept in Fuchsenloch, which is a social housing quarter of Sozialbau.
Villab – Exploration of a Villach innovation laboratory for the cooperative development of sustainable neighbourhoods
The "Villab - Probe" project serves to check the feasibility of an urban innovation laboratory to accelerate the transformation of Villach districts towards climate neutrality. Assuming positive feasibility, the cooperation with relevant stakeholders will be deepened and a business plan drawn up for a future innovation laboratory.
KLIMDO - Urban energy and climate strategy of the city of Dornbirn as basis for achieving climate neutrality by 2030
A central goal of the project is to obtain detailed knowledge of energy consumption, energy consumption flows and energy potentials including spatialization in the entire urban araea of Dornbirn. Based on this data, various scenarios are to be elaborated that map possible developments in the city. Subsequently, the basis for an energy and climate strategy based on the vision of climate neutrality will be prepared.
ESSBAR – Edible balcony gardens for retrofit – Vertical Greening Technologies for the City
Demonstration of an affordable, resource-saving and innovative balcony system with integrated edible vertical gardens and rainwater management. Considering the needs of residents for green outdoor spaces and the active participation of residents are an important part of the project.
SCI_BIM - Scanning and data capturing for Integrated Resources and Energy Assessment using Building Information Modelling
The aim of the project is to increase the resources- and energy efficiency through coupling of various digital technologies and methods for data capturing (geometry and materials composition) and modelling (as-built BIM), as well as through gamification.
SUPERBE - Potential of Superblock-concepts as contribution to planning energy-efficient urban quarters
The exploratory study SUPERBE for the first time looks into the applicability and potential effects of Superblock concepts in an Austrian urban context in order to assess their contribution to energy-oriented urban planning.
vilFIT – Villach Fit 4 Urban Mission
In this project, measures, strategies and the necessary capacity building for achieving climate neutrality in the city of Villach will be advanced. The focus is on social and structural innovations (participation processes, development of pilot initiatives, public relations, etc.) as well as the definition of networks and structures or controlling and monitoring instruments.
BIOCOOL - Bio-inspired Surfaces for the Evaporation Cooling of Building Envelopes
The BIOCOOL project will explore the transfer of morphological principles from leaves of deciduous trees, with optimized thermal properties and efficiency of evaporation to the parametric design of form-optimized architectural ceramic surfaces for climate control of building envelopes. The study paves the way for an industrial research project.