Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"
E.Vent – Efficient, cost-effective and low-maintenance central ventilation systems for multi-family housing – Design, operation and fire protection measures
Die Synopsis ist eine drei- bis vierzeilige Beschreibung des Projektinhalts alsErgänzung zum Titel und nähere Erläuterung des Projekts.
Technology Platform Photovoltaic Austria
Between research institutions and the economic system the way has been paved to initiate joint R&D projects. Common research activities have been initiated and intensified to be able to position local companies in international niche markets for photovoltaics.
Development of a solid-wood-passivehouse-window
Based on experience with low-energy-windows, a solid wood window is being developed, which meets passivehouse-standards.
Favorite Facades Reuse
The exploratory project "Favorite Facade ReUse" has set itself the goal of renovating and thermally upgrading buildings with curtain facades with a maximum proportion of reuse and the greatest possible protection of the residents. The authenticity of the building is preserved, and CO2 emissions are minimized.
BIPV-Booster - Game changer for façade-integrated PV systems: Development of proof-free constructions regarding fire protection
The central result of the project will be the development of a catalogue of “proof-free constructions” with regard to fire protection for façade-integrated photovoltaic systems, particularly for the more difficult case of high-rise buildings. These constructions will be defined in the project and tested in fire tests. The fire tests are to be supplemented by electrical and material-related module tests before and after the fire tests.
FlexHP - AI-supported control models for optimising the flexibility of heat pumps to reduce the load on the electricity grid
Development of a new type of energy management system for heat pumps that enables methods for intelligent heat pump operation and thus maximises flexibility. This requires forecast-based models for control that utilise technologies such as machine learning.
GreenGEO - Data-based integration of climate change adaptation measures into spatial planning
Green and blue infrastructure (GBI) is a key instrument in the fight against climate change. Nevertheless, deciding where and in what form it should be used most effectively remains a challenge in spatial planning practice. The development of a digital model that links location-specific climate risk data with suitable GBI measure proposals will make this much easier and more objective.
TOPS – Topology-optimised reinforced concrete slabs with digital formwork and reinforcement
The TOPS project is investigating material-efficient ribbed concrete slabs, which save up to 50% of the concrete used in conventional flat slabs by topology-optimisation. A 'file-to-factory' process enables the automated production of formwork and reinforcement using digital technologies. The construction method reduces CO₂ emissions and contributes to the decarbonisation of the construction industry.
ReAssuRe – risk management for re-use of construction components and building technology by non-destructive on-site testing procedures
Risk assessment and insurability is essential for the re-use of functional components in buildings. In the best case, properties of components can be examined before they are removed from the donor building. ReAssuRe identifies suitable on-site testing procedures and establishes a network for the quality assurance of re-use components.
TheSIS - Thermal renovation with internal insulation systems - investigation and development of moisture-proof solutions
Development of innovative solutions for the retrofit of the building envelope with internal insulation with a focus on the hygrothermal optimization of a moisture-adaptive vapor retarder in form of a paint coating. As a result, the moisture hazard related to the implementation of internal insulation systems is reduced and the energetic, comfort-related and economic advantages are made available.
AnergieLeichtGemacht - Development of Scalable Implementation Models for Geothermal Anergy Networks to Decarbonize the Building Sector
The project develops standardized technical, organizational, and financial implementation models for anergy networks to enable sustainable heating solutions in cities and municipalities. By identifying suitable settlement typologies, analyzing existing framework conditions, and engaging stakeholders, scalable solutions are created. The goal is to reduce planning and implementation barriers and facilitate investments in local anergy networks.
Diverse DH Pöchlarn - Diversification strategies for a sector-coupled district heating supply in the municipality of Pöchlarn
The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Pöchlarn so that the defossilization path can be taken further.
HeinrichBiCool - Climate-positive cooling and biodiversity through intensive greening of buildings
Using the example of an existing building of the University of Graz, currently affected by overheating, the project demonstrates what greening can achieve. Comprehensive monitoring of the indoor climate, building physics, energy requirements and biodiversity before and after the greening measures provides new scientific findings on the actual effectiveness of building greening.
SAGE - scalable multi-agent architectures for facility management and energy efficiency
The SAGE project is developing scalable multi-agent architectures that enable buildings to recognize operational anomalies autonomously and react dynamically to environmental changes. The integration of multi-agent architectures in combination with Large Language Models (LLMs) and the development of a human-in-the-loop approach will optimize the collaboration between humans and machines. These solutions should significantly reduce the energy consumption of buildings and increase user-friendliness.
MaBo - material saving in bored piles - a contribution to reducing CO2-emissions in the construction industry
Development of an innovative method for saving material in bored piles in order to reduce CO2 emissions in the construction industry. By optimizing the construction methods and using alternative materials, the sustainability of the foundation bodies is to be improved.
ECEE Climate Positivity
The ECEE Climate Positivity project aims to develop a climate-positive, scalable energy concept for commercial buildings. Through the innovative combination of building-integrated photovoltaics, component activation, and intelligent energy management, the project seeks to reduce CO₂ emissions, lower operating costs, and establish new business models for sustainable construction.
Vitality City - Holistic energy strategies for cities in transition
Energy simulation of any size city (municipalities) based on the data from laser scanning and satellite analysis (Geodata) to obtain dynamical energy demands and available energy resources.
Lahof/Lanserhofsiedlung - Path to Zero CO2 - climate-neutral demonstration building in relation to the neighbourhood
The aim is to develop and implement an innovative, climate-neutral neighbourhood concept with various sustainable energy and building technology components. A central element here is the climate-neutral demonstration building in timber construction. This building is equipped with thermal component activation in solid wood and combines innovative energy concepts such as wastewater heat recovery, large photovoltaic systems and a hydrogen system for seasonal energy storage.
FavoriteFlows – Innovative solutions for water and energy cycles in buildings for a climate fit city
Demonstration of detailed planning work and implementation of water cycles (building-integrated constructed wetland wastewater treatment) and energy cycles (wastewater heat exchanger) on a large residential apartment development for climate resilience, resource efficiency and high living standard.
sustAIn4Build - AI competence for sustainable building management in climate neutral cities
The objective of the project sustAIn4Build is to increase energy efficiency and sustainability in the building sector by using artificial intelligence (AI). Industry-specific training programs support Austrian companies to develop a workflow for integrating AI technologies into their processes, enabling them to develop resource-saving, cost-effective and sustainable solutions. This strengthens their competitiveness and contributes to the achievement of European decarbonisation goals.