Search results

There are 165 results.

Internationale Energieagentur (IEA)

IEA AFC Annex 33: Stationary Applications (Working period 2019 - 2022)

The future energy system will be strongly characterized by decentralized and renewable power generation. The use of fuel cells (FCs) can contribute to energy and environmental policy objectives. This project investigated whether a market transition from successful international demonstration plants to commercial plants is possible. The potential applications of fuel cells in the building sector and across energy communities and climate-neutral neighbourhoods were investigated.

Internationale Energieagentur (IEA)

IEA AFC Annex 34: Fuel Cells for Transportation (Working period 2019 - 2022)

The overall objective of the project is the advancement of fuel cells in transportation applications. To ensure a comprehensive penetration of the automotive market, the focus will be laid on the cost-reduction potential of fuel cell components and systems including hydrogen storage, the hydrogen infrastructure and fuel cell vehicles in public transportation as well as fuel cell powered utility vehicles.

Internationale Energieagentur (IEA)

IEA AFC Annex 34: Fuel Cells for Transportation (Working period 2022 - 2025)

The vision of the Technology Collaboration Programme on Advanced Fuel Cells (AFC TCP) is to make a significant contribution to addressing the opportunities and barriers to the commercialisation of fuel cells by promoting the development of fuel cell technologies and their applications at the international level. In detail, Annex 34 deals with the advantages and disadvantages of fuel cells, the further development of storage media, the recording of cost reduction potentials and the results analysis of pilot projects for mobile applications.

Internationale Energieagentur (IEA)

IEA AFC Annex 35: Fuel cells for portable applications (Working period 2017 - 2019)

The aim of Annex 35 is the information exchange on the status and new developments of portable fuel cell systems and comprises the development and manufacture of membrane electrode assemblies (MEAs) all the way through to system components such as electronic converters or gas supply units. In addition the setup and configuration of hybridized systems and the key topics of secure operation, codes and standards are of interest.

Internationale Energieagentur (IEA)

IEA AFC Annex 35: Fuel cells for portable applications (Working period 2020 - 2023)

The aim of Annex 35 is the information exchange on the status and new developments of portable fuel cell systems and comprises the development and manufacture of membrane electrode assemblies (MEAs) all the way through to system components such as electronic converters or gas supply units. In addition, the setup and configuration of hybridized systems and the key topics of secure operation, codes and standards are of interest.

Internationale Energieagentur (IEA)

IEA AFC Annex 35: Fuel cells für portable applications (Working period 2014 - 2017)

The aim of Annex 35 of Technology Collaboration Programm on Advanced Fuel Cells of the International Energy Agency (IEA) included information exchange on the status and new developments of portable fuel cell systems such as the direct ethanol fuel cell (DEFC) and the direct borohydride fuel cell (DBFC) and comprised the development and manufacture of membrane electrode assemblies (MEAs) all the way through to system components such as electronic converters or gas supply units.

Internationale Energieagentur (IEA)

IEA AFC Task 30: Electrolysis (Working period 2024 - 2027)

IEA AFC Task 30 deals with the production of hydrogen through electrolysis. Questions regarding material costs and durability, efficiency and reliability are at the core of research efforts. This is addressed through the development of new materials and advanced monitoring strategies to detect aging phenomena, as well as the optimisation of operating strategies. Within Task 30, developments shared among the world's leading research institutions and companies.

Internationale Energieagentur (IEA)

IEA AFC: Technology Collaboration Programme on Advanced Fuel Cells

In the AFC TCP, both technology-oriented R&D activities (polymer electrolyte membrane fuel cells, solid oxide fuel cells, electrolysers) as well as analysis to implement fuel cells in commercial applications (stationary and mobile applications) are carried-out. System investigations and modelling complement the activities of this TCP.

Internationale Energieagentur (IEA)

IEA AMF Task 63: Sustainable Aviation Fuels (SAF) (Working period 2021 - 2023)

Sustainable aviation fuels can reduce aviation GHG emissions. However, this potential remains largely untapped as such fuels currently account for only 0.1% of total aviation fuel consumption. The aim of the task was to lay the foundation for joint R&D work and facilitate the introduction of sustainable aviation fuels by identifying stakeholders, assessing national situations and sharing information.

Internationale Energieagentur (IEA)

IEA AMF Task 65: Powertrain options for non-road mobile machinery (NRMM)

Hydrogen drives are considered to be particularly important for energy-intensive applications in non-road mobile machinery (NRMM) applications. This will allow gaining a climate-effective contribution for decarbonisation of large construction and agricultural machinery. Based on the automotive sector H2 regulatory framework, the task is to develop the basis for the conformity requirements for hydrogen-powered mobile machinery and to identify approval strategies for highly mobile H2 refuelling suitable for construction sites.

Internationale Energieagentur (IEA)

IEA AMF Task 66: Recent Progress in SAF Research (working period 2024 - 2026)

AMF Task 66 will build on the work and results of AMF Task 63 on Sustainable Aviation Fuels (SAF). The Task will conduct workshops to exchange information and results on current research on SAF production and its application, as well as on related policy measures. This will enable the Task countries to better understand the state of the art, identify further research needs and derive recommendations for governments seeking to expand SAF production or use.

Internationale Energieagentur (IEA)

IEA AMF Task EATS: Exhaust gas aftertreatment systems (working period 2024 - 2027)

Internal combustion engines with renewable fuels are indispensable for the decarbonization of the hard-to-electrify industrial and transport sectors. The AMF TCP EATS Task is investigating effective exhaust aftertreatment technologies to achieve air quality comparable to electrified applications. Emissions are being analysed, suitable measurement methods identified and guidelines for limiting emissions developed.

Internationale Energieagentur (IEA)

IEA AMT Task 12: Novel 2D materials and laser-based surface processes to increase resource efficiency in mobility applications

Friction and wear cause enormous global costs and CO2 emissions. At the same time, machines should become more and more reliable. Within Task 12, new concepts in material development and surface processes are being examined and advanced in order to reduce friction and wear.

Internationale Energieagentur (IEA)

IEA Action Network "Intelligent Energy Systems": International Smart Grid Action Network (ISGAN TCP)

ISGAN is an international network for the development and exchange of expertise on smart, clean, flexible and resilient power grids ("smart grids"). ISGAN provides a platform for the communication of international experiences, trends and insights for the implementation of smart grid solutions in decarbonized energy systems of the future.

Internationale Energieagentur (IEA)

IEA Cities Task 2: Data for Urban Energy Planning (Working period 2025 - 2029)

Cities consume 60–80% of the globally produced energy and play a central role in the energy transition. However, they face challenges such as insufficient data, missing methodologies, and legal barriers. The project offers practical solutions, best practice examples, and tools for urban energy planning. The focus is on international knowledge exchange, improved data access and quality, as well as collaboration with multipliers and municipalities.

Internationale Energieagentur (IEA)

IEA DHC Annex TS3: Hybrid Energy Networks, District Heating and Cooling Networks in an Integrated Energy System Context Guidebook

Hybrid energy networks, i.e. the integration of electricity, heat and gas networks, can make a decisive contribution to optimizing the energy system. The IEA DHC Annex TS3 analyses the potentials and challenges of hybrid energy networks from the perspective of the district heating / cooling system. This is including the analyses of relevant technologies and synergies, an assessment of the different methodological approaches and tools, the analyses of case studies as well as the development of suitable business models and regulations.

Internationale Energieagentur (IEA)

IEA DHC Annex TS4: Digitalisation of District Heating and Cooling

The aim of the IEA DHC Annex TS4 is to identify the possibilities of digitalization and the integration of digital process for district heating and cooling. To this end, the Annex TS4 establishes a platform for industrial and scientific experts to strengthen international cooperation and networking and the exchange of experience of national research and development activities.

Internationale Energieagentur (IEA)

IEA DHC Annex TS7: Industry-DHC Symbiosis - A systemic approach for highly integrated industrial and thermal energy systems

Renewable and excess heat sources are currently representing nearly a third of the energy supply used in the DHC sector. Excess heat has the potential to further grow to become an important part of the energy puzzle. Up to 25% of district heating could be covered by industrial excess heat and more than 10 % of the EU's total energy demand for heating and hot water could be covered by heat from data centres, metro stations, service sector buildings, and waste-water treatment plants.

Internationale Energieagentur (IEA)

IEA DHC Annex TS8: Experimental investigations of DHC systems

The project aims at promoting and improving the use of experimental studies for the transformation, decarbonization and flexibilization of new and existing district heating and cooling (DHC) systems. A strong focus will be on the integration of digital technologies, both in terms of application (e.g., IoT and cloud solutions, digital twins, machine learning) and experimental implementation (e.g., hardware-in-the-loop, data spaces).

Internationale Energieagentur (IEA)

IEA DHC Annex TS9: Digitalisation of District Heating and Cooling – Improving Efficiency and Performance Through Data Integration (Working period 2024 - 2028)

To successfully digitalize district heating and cooling (DHC), it is important to understand the benefits of incorporating digital processes into DHC networks. The purpose of this project is to investigate solutions for data transfer and processing between the components of DHC networks, with a focus on interoperability and standardization. Furthermore, non-technical hurdles and enablers to digitization processes in the DHC sector are assessed.