Search results
There are 151 results.
IEA HPT Annex 60: Retrofitting Heat Pump Systems in Large Non-domestic Buildings
Lack of knowledge about retrofit options with heat pumps currently hinders the widespread use of the technology in non-residential buildings. In this project, easy-to-use, accessible recommendations for techno-economically optimised planning / design of heat pump applications in hospitals, shopping centres, industrial buildings, educational institutions, and museums will be developed and communicated to relevant target groups in the form of guidelines and training courses.
IEA HPT Annex 61: Heat Pumps in Positive Energy Districts
IEA HPT Annex 61 evaluates the role of heat pumps (HP) in positive energy districts (PED). Efficiency potentials of the electric and thermal energy of districts that can be unlocked with the use of HPs are evaluated in order to reach a positive energy balance. This refers to both, upgrade of waste heat and simultaneous generation of different energy use in buildings (space heating, DHW, space cooling/dehumidification) and includes self-consumption of on-site renewable electricity generation.
IEA HPT Annex 63: Impact of heat pump placement on noise emissions
Noise emissions from heat pumps are a potential barrier for broad market diffusion of this energy efficiency technology, especially in urban areas. In this project, the influences of noise emissions in the building and in the neighbourhood are characterised, their psychoacoustic effects are analysed in more detail, and tools for digitally supporting heat pump placement are further developed. The results will be presented to relevant target groups in the form of guidelines and other documentation.
IEA HPT Annex 64: Safety measures for flammable refrigerants
New bans on chemicals and the revision of the so-called F-Gas Regulation pose new challenges for the heat pump and refrigeration industry. In this project, new knowledge regarding the safe future use of flammable refrigerants in heat pump and refrigeration systems up to 50 kW for room temperature control and hot water preparation is being developed and made available to the relevant target groups.
IEA HPT Task 41: Cold Climate Heat Pumps
The aim was to increase the efficiency of outdoor air heat pumps in cold climates in locations with low outside temperatures of up to -25°C. Newly developed heat exchanger concepts were tested and optimized regarding their icing behaviour. Different circuit modifications were modelled and simulation studies for low ambient temperatures were carried out.
IEA HPT Task 42: Heat pumps in smart energy grids for sustainable cities
The aim of Annex 42 is to analyse the technical possibilities as well as the economic/regulatory framework conditions of heat pumps for load balancing in smart grids, which are largely controlled by electricity supplier, and to investigate the impact on thermal consumers and possible potentials, in order to work out economic incentive models for load shifting and the benefits for energy supply companies and end customers on this basis.
IEA Heat Pumping Technologies (HPT)
The IEA Heat Pump Technologies programme develops and disseminates objective and balanced information on heat pumps, refrigeration technologies and air conditioning with the aim of exploiting the environmentally relevant and energetic potential of these technologies. This programme includes joint research projects, workshops, conferences and an information service (IEA Heat Pump Centre).
IEA Hybrid and Electric Vehicle Technology Collaboration Programme (HEV-TCP)
The Technology Collaboration Programme on Hybrid and Electric Vehicles (HEV TCP) vision is that the electric drivetrain will be used as the predominant transportation mode in a sustainable transport system that is preferably powered by renewable energy and does not produce harmful emissions.
IEA IETS Annex 11: Industrial Biorefineries (Working period 2020-2022)
With the increasing market share of bio-based products, the concepts of circular economy are highly relevant for the industry. In this context, biorefineries have established themselves as an explicitly integrative, multi-functional overall concept and essential hub in the use of biomass as a raw material source for the sustainable production of various (intermediate) products (chemicals, valuable materials, energy carriers).
IEA IETS Annex 15: Industrial Excess Heat Recover (Phase 3)
Within the framework of the IEA IETS Annex 15 (Phase 3), potentials for the use of waste heat as well as technologies for its integration are collected, bundled and processed through contributions from national research activities. The contributions of the Austrian consortium included technology development and integration concepts of heat pump and energy storage systems, risk analysis in the implementation of waste heat projects, and work on operation optimization and design of hybrid energy systems.
IEA IETS Annex 17: Membrane filtration for energy-efficient separation of lignocellulosic biomass components
The overarching goal of IEA IETS TCP Annex 17 is to strengthen the network of the Austrian membrane and biorefinery landscape.
IEA IETS Annex 17: Membrane processes in biorefineries (Working period 2020 - 2022)
The aim of IEA IETS Task 17 was to network and strengthen the Austrian membrane and biorefinery research landscape and to promote international exchange on energy- and cost-efficient separation technologies such as membrane distillation (MD), forward osmosis (FO), pervaporation (PV) and liquid membrane permeation (FMP) for the optimised use of lignocellulosic material in biorefineries. A guideline for the integration of emerging membrane processes was created for this purpose.
IEA IETS Annex 18: Digitalization, artificial intelligence and related technologies for energy efficiency and reduction of GHG emissions in industry (Working period 2020 - 2023)
The work in Task 18 enables the exchange of experience and knowledge between industry and research institutions from different countries. Through this cooperation best practices are identified and disseminated to promote the implementation of energy-efficient technologies in industry. In the medium and long-term, this contributes to reduce energy consumption and greenhouse gas emissions of industry.
IEA IETS Task 11: Industrial Biorefineries (Working period 2022-2024)
Biorefineries producing a portfolio of biobased products or bioenergy are the backbone of the growing bioeconomy. IEA IETS Task 11 aims to minimize greenhouse gas emissions to net zero along different biorefinery pathways. Tools and methodologies for increasing energy efficiency and the use of renewable energies are to be summarized and disseminated to relevant target groups.
IEA IETS Task 15: Industrial Excess Heat Recovery (Phase 4)
Excess heat recovery plays a crucial role in reducing emissions in industry. Through strategic planning and efficient process integration, companies can improve their energy efficiency and significantly reduce their carbon footprint. Task XV facilitates the international exchange of experience and knowledge between different companies. This identifies best practices to promote the implementation of energy-efficient technologies in industry.
IEA IETS Task 17: Membrane processes in biorefineries (Working period 2023 - 2025)
Biorefineries are essential for the transition from petroleum- to a biobased industry. The use of biomass as raw material for recyclable materials, chemicals and energy sources is essential and requires efficient and sustainable production processes. This project aims to strengthen national and international know-how transfer between research and development for membrane-based processes in biorefineries. The focus is on application, improvement and innovation in all aspects of membrane distillation.
IEA IETS Task 18: Digitalization, Artificial Intelligence and Related Technologies for Energy Efficiency and GHG Emissions Reduction in Industry (Working period 2023 - 2024)
The work in Task 18 enables the exchange of experience and knowledge between industry and research institutions from different countries. Through this cooperation best practices are identified and disseminated to promote the implementation of energy-efficient technologies in industry. In the medium and long-term, this contributes to reduce energy consumption and greenhouse gas emissions of industry.
IEA IETS Task 21 Decarbonizing industrial systems in a circular economy framework
Energy and CO2 savings through circular economy, especially directly through carbon circularity (CCU), and resource and energy efficiency through industrial symbiosis are two key approaches to decarbonizing industry.
IEA IETS Task 23: Drivers and Barriers for the Transformation of Industrial Energy, Technologies and Systems
The successful reduction of industrial greenhouse gas emissions requires the integration of a wide range of competencies. In addition to technical barriers, there are also organizational, regulatory, societal and financial barriers. The new Task 23 addresses the need for collaboration and system thinking to overcome non-technical barriers. The technical work in ongoing tasks should be supplemented by this task, which should provide added value in overcoming non-technical hurdles.
IEA ISGAN Annex 3: Benefit/Cost Analyses and Tools of Smart Grids
Together with experts from 11 countries, the EI-JKU has analysed cost-benefit models and developed proposals for their adaptation and further development. In the course of the work, the EI-JKU dealt in particular with two questions: how such an evaluation model can be adapted to Austrian conditions and which socio-economic factors influence the question of whether an end consumer emerges as a winner or loser from Smart Grid-based functionalities.