Project Image Pool
There are 156 results.
Terms of use: The pictures on this site originate from the projects in the frame of the programmes City of Tomorrow, Building of Tomorrow and the IEA Research Cooperation. They may be used credited for non-commercial purposes under the Creative Commons License Attribution-NonCommercial (CC BY-NC).
Group photo of the Battery Safety Talk with speaker and organizer
On May 15, 2024, around 80 experts from the mobility industry gathered at the Green Testing Lab in the Hartberg Eco Park to discuss the latest developments and challenges about battery safety in e-mobility. In a total of seven lectures, well-known speakers provided valuable input from different perspectives, which was deepened in following discussions with the audience.
Copyright: Green Testing Lab GmbH
Host of the Battery Safety Talk and founder of Green Testing Lab Max Hofer welcomes the participants
As part of the Battery Safety Talk, well-known speakers delivered seven presentations from different perspectives on the topic of battery safety. Aim of the event was to network experts in order to share knowledge and thus increase safety in this area.
Copyright: Green Testing Lab GmbH
Expert audience from all over Austria at the Battery Safety Talk 2024
Around 80 experts from research, development, industry and authorities were able to exchange ideas on the topic of battery safety at the Battery Safety Talk in May 2024. The organizer was the Green Testing Lab in Hartberg, which created the opportunity to get to know different perspectives and to enter discussions with experts from different areas.
Copyright: Green Testing Lab GmbH
Combined building and plant simulation in real time
In a dynamic building simulation, the zones (rooms) are in contact with their surroundings and with the adjacent building components, the people, equipment and objects located in them. In the combined building and plant simulation, the dynamic interaction between building, plant and control is also taken into account. A building and plant simulation, adapted in real time to the actual weather conditions and current measurement data from the building, can help to optimize the control of the building services and thus reduce energy costs and increase user comfort.
Copyright: EQUA
Two Austrian demonstration building digital twin
In recent years, AEE INTEC has completed two projects for the development and initial implementation of a digital twin on real buildings in Austria. This digital twin is a detailed simulation model using IDA ICE software, which is compared in real time with measurement data from a real building. This creates a model that represents the real condition of the building and its building services at any given time. This model can then be used for automated fault detection or to optimize control systems. The aim is to reduce energy consumption and improve user comfort.
Copyright: AEE INTEC / Arrowhead Tools Project
Liebherr large-size wheel loader with hydrogen engine
Premiere of hydrogen wheel loader prototype L 566H with MAN hydrogen truck in June 2024, both vehicles powered by hydrogen engines.
Copyright: Liebherr-Werk Bischofshofen GmbH
Liebherr small-size wheel loader with fuel cell drive system
Presentation of wheel loader demonstrator L 507 Fuel Cell with hydrogen fuel cell at Bauma in October 2022.
Copyright: Liebherr-Werk Bischofshofen GmbH
Liebherr large-size excavator with hydorgen engine
Presentation of crawler excavator demonstrator R 9XXH with hydrogen engine at Bauma in October 2022.
Copyright: Liebherr-Werk Bischofshofen GmbH
Areas of application for highly mobile hydrogen refuelling
Areas of application for highly mobile, construction site-compatible hydrogen refuelling at locations with no or insufficient refuelling and charging infrastructure.
Copyright: Liebherr-Werk Bischofshofen GmbH
Design example for a highly mobile hydrogen refuelling station
Functionality of highly mobile hydrogen refuelling using the example of the MAX Mobile Refueler from Maximator: (1) The refuelling vehicle is refuelled at the public 700 bar truck filling station. (2) The already compressed hydrogen is brought to the machine by the transport vehicle. (3) Hydrogen is refuelled into the machine in a few minutes using a displacement principle with low energy input, whereby the highly mobile filling device is driven by the machine to be refuelled.
Copyright: Liebherr-Werk Bischofshofen GmbH / Maximator Advanced Technology GmbH
Distribution of the ion current density in the membrane of the aged cell, expressed as a percentage compared to the initial state. This provides a detailed insight into the current distribution within the cell.
False colour image of the ion current density across the flow field of the cell.
Copyright: CEET/TU Graz
Graphical representation of the assessment across a range of different storage technologies
Comparison of various parameters (storage capacity, TRL, efficiency, cost, safety and commercial availability) for the storage technologies under consideration. These include liquid hydrogen, compressed hydrogen, organic hydrogen carriers, metal hydrides, ammonia, but also redox flow and lithium-based battery systems, pumped storage and chemical looping hydrogen (HyLoop).
Copyright: CEET/TU Graz
Concept of surfactant-doped polyaniline coating for gas diffusion layers
PTFE-free hydrophobisation and improved electrical conductivity: Surface-active species consisting of non-polar, negatively charged terminal groups and apolar residues attach themselves to the positively charged PANI framework, which ensures electrical conductivity.
Copyright: CEET/TU Graz
Test cell for gas diffusion electrodes as a bridging tool between basic and applied research in the field of PEFC.
Illustration of a test cell in the laboratory.
Copyright: Lunghammer - TU Graz
Overview IETS Task 21 Phase 3
The IETS Task 21 at a glance: A clear presentation of its development from its initiation in 2020 to Phase 3, including the activities of Subtasks 1 to 5.
Copyright: Eigene Darstellung: Moser, Energieinstitut an der JKU
New CCU/CCS value chains
Project-based analysis of new CCU and CCS value chains using a canvas.
Copyright: Gahleitner/Böhm/Moser, Energieinstitut an der JKU
Visibility and Obervability of distribution grid assets and grid status
One challenge for the use of decentralized flexibility is the current lack of visibility of the systems and the lack of observability in the distribution grid, as well as the lack of real-time information on the topology of the distribution grid itself. These problems make it difficult to verify the actual need for flexibility as well as to validate or measure the flexibility provided.
Copyright: AIT Austrian Institute of Technology based on Werner van Westering
Data exchange between different stakeholders as a challenge
The energy system data and the data exchange between transmission and distribution system operators, as well as suppliers and aggregators, are currently only sufficient to a limited extent to enable an appropriate provision of flexibility services.
Copyright: AIT Austrian Institute of Technology based on Werner van Westering
Example of a LinkedIn post for a survey
Example of a LinkedIn post for a survey which was conducted during the initial phase of the project
Copyright: Barbara Herndler
Overview of the ÜVB-VNB project landscape
Overview of the ÜVB-VNB project landscape which provides an overview of the international projects (2014-2024) which were evaluated and used for the report. Also indicated are the projects' respective focus areas
 
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                            