Suchergebnisse
ReSpace – Reclaiming Spaces
ReSpace is developing an AI-based model for identifying, categorizing, and activating sealed areas. Existing data sources (aerial and satellite images, mobile network data, land registry entries) are integrated and enhanced with dynamic analysis to derive evidence-based recommendations for action.
AI4FM - Artificial Intelligence for Facility Management
AI-based anomaly and fault detection in buildings. Digital twins of buildings with simulation models for testing and optimizing rule-based fault detection methods. Mining of the recorded time-series data from existing Building Management Systems to train Machine Learning models for fault detection.
BIPV-Booster - Game changer for façade-integrated PV systems: Development of proof-free constructions regarding fire protection
The central result of the project will be the development of a catalogue of “proof-free constructions” with regard to fire protection for façade-integrated photovoltaic systems, particularly for the more difficult case of high-rise buildings. These constructions will be defined in the project and tested in fire tests. The fire tests are to be supplemented by electrical and material-related module tests before and after the fire tests.
Abwärme_4_Kapfenberg - 100 % industrielle Abwärmeauskopplung Kapfenberg
The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Kapfenberg to foster the defossilization path.
BOSS - Building Energy Systems on causal reasoning
The project develops novel Causal AI methods for automated fault detection in buildings. It aims to derive semantic structures from time series data and transparently model cause-effect relationships. This provides the foundation for scalable, explainable FDD solutions to reduce energy consumption and emissions in the building sector.
CEPA-Connect
The CEPA energy facade is an innovative building refurbishment system with an external active energy level. The aim is to revolutionize the refurbishment market. The development of the system focuses on holistic solutions for the thermal-energetic refurbishment of buildings.
GreenGEO - Data-based integration of climate change adaptation measures into spatial planning
Green and blue infrastructure (GBI) is a key instrument in the fight against climate change. Nevertheless, deciding where and in what form it should be used most effectively remains a challenge in spatial planning practice. The development of a digital model that links location-specific climate risk data with suitable GBI measure proposals will make this much easier and more objective.
HeinrichBiCool - Climate-positive cooling and biodiversity through intensive greening of buildings
Using the example of an existing building of the University of Graz, currently affected by overheating, the project demonstrates what greening can achieve. Comprehensive monitoring of the indoor climate, building physics, energy requirements and biodiversity before and after the greening measures provides new scientific findings on the actual effectiveness of building greening.
GREEN Stone: development of a cement-free concrete with recycled content for applications in landscaping
The Green Stone project aims to develop geopolymer concrete with recycled materials in order to reduce the consumption of non-renewable resources and replace the cement content with alternative binders. The landscaping industry in particular requires lightweight, durable and weather-resistant materials.
RCC2 - Life cycle assessment of heatable formwork for CO2-reduced and climate-neutral concrete
Experimental development of innovative formulations of CO2-reduced concrete and heated formwork to support early strength development in wintry temperatures.
ReAssuRe – risk management for re-use of construction components and building technology by non-destructive on-site testing procedures
Risk assessment and insurability is essential for the re-use of functional components in buildings. In the best case, properties of components can be examined before they are removed from the donor building. ReAssuRe identifies suitable on-site testing procedures and establishes a network for the quality assurance of re-use components.
DigiHemp/ Digital technologies for quality assurance and performance enhancement of hemp-based building materials
Development of digital methods for describing, predicting and optimizing the thermal/mechanical properties of composite materials made from bio-based raw materials. Taking into account the complex material morphology as well as the properties of the components for the prediction of building material properties, the overall goal of increasing the use of bio-based building materials shall be achieved.
Diverse DH Pöchlarn - Diversification strategies for a sector-coupled district heating supply in the municipality of Pöchlarn
The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Pöchlarn so that the defossilization path can be taken further.
ECEE Climate Positivity
The ECEE Climate Positivity project aims to develop a climate-positive, scalable energy concept for commercial buildings. Through the innovative combination of building-integrated photovoltaics, component activation, and intelligent energy management, the project seeks to reduce CO₂ emissions, lower operating costs, and establish new business models for sustainable construction.
MaBo - material saving in bored piles - a contribution to reducing CO2-emissions in the construction industry
Development of an innovative method for saving material in bored piles in order to reduce CO2 emissions in the construction industry. By optimizing the construction methods and using alternative materials, the sustainability of the foundation bodies is to be improved.
V-Form – Manufacturing unreinforced vaulted concrete floors with variable pneumatic formworks
V-Form is working on the development of vaulted concrete floors in terms of structural design and building physics, as well as on a new formwork system. Thanks to the efficient shell construction, around 70% CO2eq-emissions can be saved compared to reinforced concrete flat slabs. The reusable and variable pneumatic formwork system aims to enable the economical production of the double-curved concrete shells.
TOPS – Topology-optimised reinforced concrete slabs with digital formwork and reinforcement
The TOPS project is investigating material-efficient ribbed concrete slabs, which save up to 50% of the concrete used in conventional flat slabs by topology-optimisation. A 'file-to-factory' process enables the automated production of formwork and reinforcement using digital technologies. The construction method reduces CO₂ emissions and contributes to the decarbonisation of the construction industry.
Vitality City - Holistic energy strategies for cities in transition
Energy simulation of any size city (municipalities) based on the data from laser scanning and satellite analysis (Geodata) to obtain dynamical energy demands and available energy resources.
Topview - Methodology for the efficient use of remote sensing data for climate change adaptation and spatial energy planning
Development of integrated approaches to sustainable energy and heat planning in urban areas by utilising remote sensing data and geo-information-based technologies for decision-making in the planning of energy infrastructures and climate adaptation measures.
fERNkornSAN – decarbonization and renovation with renewable materials of the "Gründerzeit"-building Fernkorngasse 41
Using the example "Gründerzeitgebäude" in Fernkorngasse 41, 1100 Vienna, technical challenges and issues related to phasing out gas and oil as well as adapting to climate change are investigated. A particular focus is placed on the use or resource-efficient and ecological building materials and highly efficient technologies. The results should be the basis for the use for further projects.