Suchergebnisse
Green BIM - Green building infrastructure as part of BIM-based planning and maintenance
Fusion of greenery and BIM planning to achieve a friction-free conducting and maintenance. By analysing the case studies, “Green BIM” examined to what extent typical steps in planning regarding greened buildings can be edited by characteristic software programs in a BIM-equitable way. The expected outcomes are supplements to international standards for data structures in civil engineering (IFC / ISO 16739) which are further on added to BIM applications by the software industry.
openBAM - Open Building Automation Modelling - Open modeling of building automation over the entire building life cycle
Platform-independent modeling of control and regulation logic for detailed study of building automation systems involving construction and building technology. The result enables the analysis of energy saving potentials through building automation before construction.
digiactiv - digital transformation for more interactivity in MEP-(mechanical, electrical and plumbing-)planning
The aim of the digiactiv project was to improve the interoperability between the different stakeholders in the building construction sector using open and neutral semantic data models. With digital transformation processes, digiactiv helps to increase the quality of planning and the operation of buildings, as well as to minimize the interface risk between various stakeholders.
GreenGEO - Data-based integration of climate change adaptation measures into spatial planning
Green and blue infrastructure (GBI) is a key instrument in the fight against climate change. Nevertheless, deciding where and in what form it should be used most effectively remains a challenge in spatial planning practice. The development of a digital model that links location-specific climate risk data with suitable GBI measure proposals will make this much easier and more objective.
GeoDatKlim - Geo Data and Satellite Data for Carbon Neutral Cities
The Vienna Geospace Hub innovation lab will help optimize the application of geospatial and satellite data to solve complex urban challenges. The innovation lab serves as a networking platform for administration, science, economy, as well as a development and test environment for innovative use cases.
Topview - Methodology for the efficient use of remote sensing data for climate change adaptation and spatial energy planning
Development of integrated approaches to sustainable energy and heat planning in urban areas by utilising remote sensing data and geo-information-based technologies for decision-making in the planning of energy infrastructures and climate adaptation measures.
ThermEcoFlow: Innovative technologies and methods for indoor air comfort and energy optimisation in thermal spa buildings
ThermEcoFlow aims to optimize the energy consumption of thermal spas facilities through improved simulation models and AI-supported control systems. By precisely modelling airflow, humidity loads, and evaporation, combined with AI-driven regulation, the project seeks to reduce energy consumption and CO₂ emissions in the long term while enhancing indoor comfort for visitors.
MaBo - material saving in bored piles - a contribution to reducing CO2-emissions in the construction industry
Development of an innovative method for saving material in bored piles in order to reduce CO2 emissions in the construction industry. By optimizing the construction methods and using alternative materials, the sustainability of the foundation bodies is to be improved.
QualitySysVillab - Protecting sustainable qualities in neighbourhood developments through process control and new digital methods
Development of a process concept to bring sustainable qualities in neighbourhood development from the intention and announcement level to the built reality. The process is supported by digital methods of energy and structural design and evaluated in the context of a case study.
BIM.sustAIn - Artificial Intelligence to enhance sustainability in BIM projects
The construction sector faces growing challenges in meeting sustainability requirements, particularly during early project phases where key decisions on materials, construction methods, and energy concepts are made. This project aims to leverage AI and BIM to optimize sustainability assessments by providing precise CO₂ balance forecasts and material suggestions. The innovative approach reduces manual effort and supports the implementation of climate-neutral construction, contributing significantly to Austria’s climate goals.
FlexHP - AI-supported control models for optimising the flexibility of heat pumps to reduce the load on the electricity grid
Development of a new type of energy management system for heat pumps that enables methods for intelligent heat pump operation and thus maximises flexibility. This requires forecast-based models for control that utilise technologies such as machine learning.
GreenFDT – Green Façade Digital Twin
In an interdisciplinary framework, the possibilities for optimizing the rear ventilation distance of façade greening elements and their potential impact on indoor and urban climate are being investigated. The precise and comprehensive investigation of these relationships is made possible by the extensive deployment of sensors and measuring tools and furthermore the development and integration of a digital twin in a BIM model.
Vitality City - Holistic energy strategies for cities in transition
Energy simulation of any size city (municipalities) based on the data from laser scanning and satellite analysis (Geodata) to obtain dynamical energy demands and available energy resources.
IMPACT – Hybrid hydraulic and electric charging of stratified compact hot water
The IMPACT project is developing an innovative decentralised hot water storage technology for large-volume urban housing. Thanks to a novel, flat design, the system enables highly efficient utilisation of renewable energy sources such as heat pumps and photovoltaics. The aim is to create a cost-efficient, sustainable solution for decarbonising water heating that is optimised using intelligent energy management and machine learning methods.
Circular Bio Floor- Floor construction made from biomaterials
In this project biogenic building materials from wood industry waste and geopolymer binders are developed that can be used as tamped fill or 3D-printed dry-screed elements in timber construction. These materials offer functional benefits and an excellent eco-balance, contribute to the conservation of forests and enable the production of separable and reusable floor segment panels using digital manufacturing technologies. That significantly reduces the consumption of primary raw materials.
BATTMON - Increasing the usable charging capacity, service life and safety of battery storage systems in urban areas
The aim of BATTMON is to develop an improved method of determining the condition of battery storage systems for applications in buildings and neighborhoods. To this end, area-based foil sensors are being developed for the spatially resolved measurement of temperature and pressure. This data will be used to estimate the state of charge and also the state of health more accurately and to detect cell damage at an early stage in order to reduce the risk of fire and explosion.
m-hub - a web-based data hub for collection and query of material compositions of the building stock of the City of Vienna
The project creates a web-based platform with which the material composition of buildings within the city of Vienna can be entered and queried. In the background, a prediction model based on artificial intelligence is trained to make forecasts for buildings that have not yet been cataloged.
KliB40-Climate Compass: Climate-neutral Bregenz 2040, climate compass for the structured participation of stakeholders and the citizens
The "KliB40 Climate Compass" supports Bregenz on its path to climate neutrality by 2040 through transparent development, selection, and monitoring of measures. It facilitates the coordination of climate protection activities and actively involves stakeholders. By evaluating existing software solutions, the project ensures optimal digital support for planning and implementing the city's climate strategy.
MokiG: Monitoring for climate-neutral buildings
The aim is to develop and implement an innovative monitoring concept to demonstrate the achievement of climate neutrality in buildings. A central element here is the integration and linking of various data sources. The basis for this is a data mesh structure, artificial intelligence and the creation of digital twins. Finally, the methodology will be tested on real buildings and discussed with users.
SAGE - scalable multi-agent architectures for facility management and energy efficiency
The SAGE project is developing scalable multi-agent architectures that enable buildings to recognize operational anomalies autonomously and react dynamically to environmental changes. The integration of multi-agent architectures in combination with Large Language Models (LLMs) and the development of a human-in-the-loop approach will optimize the collaboration between humans and machines. These solutions should significantly reduce the energy consumption of buildings and increase user-friendliness.