Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"
ReAssuRe – risk management for re-use of construction components and building technology by non-destructive on-site testing procedures
Risk assessment and insurability is essential for the re-use of functional components in buildings. In the best case, properties of components can be examined before they are removed from the donor building. ReAssuRe identifies suitable on-site testing procedures and establishes a network for the quality assurance of re-use components.
TheSIS - Thermal renovation with internal insulation systems - investigation and development of moisture-proof solutions
Development of innovative solutions for the retrofit of the building envelope with internal insulation with a focus on the hygrothermal optimization of a moisture-adaptive vapor retarder in form of a paint coating. As a result, the moisture hazard related to the implementation of internal insulation systems is reduced and the energetic, comfort-related and economic advantages are made available.
AnergieLeichtGemacht - Development of Scalable Implementation Models for Geothermal Anergy Networks to Decarbonize the Building Sector
The project develops standardized technical, organizational, and financial implementation models for anergy networks to enable sustainable heating solutions in cities and municipalities. By identifying suitable settlement typologies, analyzing existing framework conditions, and engaging stakeholders, scalable solutions are created. The goal is to reduce planning and implementation barriers and facilitate investments in local anergy networks.
Diverse DH Pöchlarn - Diversification strategies for a sector-coupled district heating supply in the municipality of Pöchlarn
The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Pöchlarn so that the defossilization path can be taken further.
HeinrichBiCool - Climate-positive cooling and biodiversity through intensive greening of buildings
Using the example of an existing building of the University of Graz, currently affected by overheating, the project demonstrates what greening can achieve. Comprehensive monitoring of the indoor climate, building physics, energy requirements and biodiversity before and after the greening measures provides new scientific findings on the actual effectiveness of building greening.
SAGE - scalable multi-agent architectures for facility management and energy efficiency
The SAGE project is developing scalable multi-agent architectures that enable buildings to recognize operational anomalies autonomously and react dynamically to environmental changes. The integration of multi-agent architectures in combination with Large Language Models (LLMs) and the development of a human-in-the-loop approach will optimize the collaboration between humans and machines. These solutions should significantly reduce the energy consumption of buildings and increase user-friendliness.
MaBo - material saving in bored piles - a contribution to reducing CO2-emissions in the construction industry
Development of an innovative method for saving material in bored piles in order to reduce CO2 emissions in the construction industry. By optimizing the construction methods and using alternative materials, the sustainability of the foundation bodies is to be improved.
THERM-opti-BALKON-P2 - Thermisch optimierte Balkonsanierung Phase 2: In-Situ-Versuchsanlage
Bei der thermischen Sanierung von Gebäuden stellen frei auskragende Balkone ein besonderes Problem dar. Mit dem THERM-opti-BALKON-System wird derzeit unter Laborbedingungen ein diesbezüglicher Lösungsansatz erforscht. Phase 2 soll eine In-Situ-Versuchsanlage unter realen Bedingungen als Technologiedemonstrator schaffen. Wichtigster Untersuchungsgegenstand ist das Langzeitverhalten des THERM-opti-BALKON-Systems.
ECEE Climate Positivity
The ECEE Climate Positivity project aims to develop a climate-positive, scalable energy concept for commercial buildings. Through the innovative combination of building-integrated photovoltaics, component activation, and intelligent energy management, the project seeks to reduce CO₂ emissions, lower operating costs, and establish new business models for sustainable construction.
Vitality City - Holistic energy strategies for cities in transition
Energy simulation of any size city (municipalities) based on the data from laser scanning and satellite analysis (Geodata) to obtain dynamical energy demands and available energy resources.
Lahof/Lanserhofsiedlung - Path to Zero CO2 - climate-neutral demonstration building in relation to the neighbourhood
The aim is to develop and implement an innovative, climate-neutral neighbourhood concept with various sustainable energy and building technology components. A central element here is the climate-neutral demonstration building in timber construction. This building is equipped with thermal component activation in solid wood and combines innovative energy concepts such as wastewater heat recovery, large photovoltaic systems and a hydrogen system for seasonal energy storage.
FavoriteFlows – Innovative solutions for water and energy cycles in buildings for a climate fit city
Demonstration of detailed planning work and implementation of water cycles (building-integrated constructed wetland wastewater treatment) and energy cycles (wastewater heat exchanger) on a large residential apartment development for climate resilience, resource efficiency and high living standard.
sustAIn4Build - AI competence for sustainable building management in climate neutral cities
The objective of the project sustAIn4Build is to increase energy efficiency and sustainability in the building sector by using artificial intelligence (AI). Industry-specific training programs support Austrian companies to develop a workflow for integrating AI technologies into their processes, enabling them to develop resource-saving, cost-effective and sustainable solutions. This strengthens their competitiveness and contributes to the achievement of European decarbonisation goals.
GreenFDT – Green Façade Digital Twin
In an interdisciplinary framework, the possibilities for optimizing the rear ventilation distance of façade greening elements and their potential impact on indoor and urban climate are being investigated. The precise and comprehensive investigation of these relationships is made possible by the extensive deployment of sensors and measuring tools and furthermore the development and integration of a digital twin in a BIM model.
SIMPLE AD Evaluator - S.I.M.P.L.E. Sustainable Integration Modeling and Predictive Leveraging Evaluator
The SIMPLE AD Evaluator fills an existing gap in sustainable local planning by providing a low-threshold and collaborative evaluation tool for early planning phases. By linking questionnaires with System Dynamics models, the tool delivers well-founded decision-making foundations and customized sustainability checklists. This supports municipalities, project developers, and decision-makers in achieving a strategic and cost-efficient sustainable transformation from concept to implementation.
ReSpace – Reclaiming Spaces
ReSpace is developing an AI-based model for identifying, categorizing, and activating sealed areas. Existing data sources (aerial and satellite images, mobile network data, land registry entries) are integrated and enhanced with dynamic analysis to derive evidence-based recommendations for action.
Topview - Methodology for the efficient use of remote sensing data for climate change adaptation and spatial energy planning
Development of integrated approaches to sustainable energy and heat planning in urban areas by utilising remote sensing data and geo-information-based technologies for decision-making in the planning of energy infrastructures and climate adaptation measures.
GREEN Stone: development of a cement-free concrete with recycled content for applications in landscaping
The Green Stone project aims to develop geopolymer concrete with recycled materials in order to reduce the consumption of non-renewable resources and replace the cement content with alternative binders. The landscaping industry in particular requires lightweight, durable and weather-resistant materials.
fERNkornSAN – decarbonization and renovation with renewable materials of the "Gründerzeit"-building Fernkorngasse 41
Using the example "Gründerzeitgebäude" in Fernkorngasse 41, 1100 Vienna, technical challenges and issues related to phasing out gas and oil as well as adapting to climate change are investigated. A particular focus is placed on the use or resource-efficient and ecological building materials and highly efficient technologies. The results should be the basis for the use for further projects.
CEPA-Connect
The CEPA energy facade is an innovative building refurbishment system with an external active energy level. The aim is to revolutionize the refurbishment market. The development of the system focuses on holistic solutions for the thermal-energetic refurbishment of buildings.