Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Stadt der Zukunft

P2PQ - Peer2Peer im Quartier

Das Projekt Peer2Peer im Quartier befasst sich mit der konkreten Umsetzung von Anwendungen zu Photovoltaik-Eigenverbrauchsoptimierung sowie Peer-to-Peer-Beziehungen auf Basis der Blockchain-Technologie in Quartieren und deren Validierung im Echtbetrieb. Schriftenreihe 26/2022

Herausgeber: BMK
Deutsch, 43 Seiten

Downloads zur Publikation

Klimaneutrale Stadt

GREEN Stone: development of a cement-free concrete with recycled content for applications in landscaping

The Green Stone project aims to develop geopolymer concrete with recycled mate­rials in order to reduce the consumption of non-renewable resources and replace the cement content with alternative binders. The landscaping industry in particular requires lightweight, durable and weather-resistant materials.

Klimaneutrale Stadt

ReSpace – Reclaiming Spaces

ReSpace is developing an AI-based model for identifying, categorizing, and activating sealed areas. Existing data sources (aerial and satellite images, mobile network data, land registry entries) are integrated and enhanced with dynamic analysis to derive evidence-based recommendations for action.

Klimaneutrale Stadt

Topview - Methodology for the efficient use of remote sensing data for climate change adaptation and spatial energy planning

Development of integrated approaches to sustainable energy and heat planning in urban areas by utilising remote sensing data and geo-information-based technologies for decision-making in the planning of energy infrastructures and climate adaptation measures.

Klimaneutrale Stadt

fERNkornSAN – decarbonization and renovation with renewable materials of the "Gründerzeit"-building Fernkorngasse 41

Using the example "Gründerzeitgebäude" in Fernkorngasse 41, 1100 Vienna, technical challenges and issues related to phasing out gas and oil as well as adapting to climate change are investigated. A particular focus is placed on the use or resource-efficient and ecological building materials and highly efficient technologies. The results should be the basis for the use for further projects.

Klimaneutrale Stadt

CEPA-Connect

The CEPA energy facade is an innovative building refurbishment system with an external active energy level. The aim is to revolutionize the refurbishment market. The development of the system focuses on holistic solutions for the thermal-energetic refurbishment of buildings.

Klimaneutrale Stadt

Abwärme_4_Kapfenberg - 100 % industrielle Abwärmeauskopplung Kapfenberg

The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Kapfenberg to foster the defossilization path.

Klimaneutrale Stadt

iLESS - Intelligent load profile analysis to maximize self-consumption of solar power

The goal is to reconstruct the individual contributions of various devices from existing load profile curves. This problem is of fundamental importance in the context of maximizing self-consumption of solar power by private households.

Klimaneutrale Stadt

BOSS - Building Energy Systems on causal reasoning

The project develops novel Causal AI methods for automated fault detection in buildings. It aims to derive semantic structures from time series data and transparently model cause-effect relationships. This provides the foundation for scalable, explainable FDD solutions to reduce energy consumption and emissions in the building sector.

Klimaneutrale Stadt

AI4FM - Artificial Intelligence for Facility Management

AI-based anomaly and fault detection in buildings. Digital twins of buildings with simulation models for testing and optimizing rule-based fault detection methods. Mining of the recorded time-series data from existing Building Management Systems to train Machine Learning models for fault detection.

Klimaneutrale Stadt

RCC2 - Life cycle assessment of heatable formwork for CO2-reduced and climate-neutral concrete

Experimental development of innovative formulations of CO2-reduced concrete and heated formwork to support early strength development in wintry temperatures.

Haus der Zukunft

Entwicklung einer Passivhaus- Außentüre

Entwicklung eines "passivhaustauglichen" in Serienproduktion herstellbaren Außentürsystems. Mehrsprachig

Klimaneutrale Stadt

MokiG: Monitoring for climate-neutral buildings

The aim is to develop and implement an innovative monitoring concept to demon­strate the achievement of climate neutrality in buildings. A central element here is the integration and linking of various data sources. The basis for this is a data mesh structure, artificial intelligence and the creation of digital twins. Finally, the metho­dology will be tested on real buildings and discussed with users.

Klimaneutrale Stadt

Kimoni – Artificial Intelligence for Monitoring the Performance of Green Infrastructure

Kimoni develops an AI-based tool for high-resolution analysis and assessment of Green Infra­structure for climate change adaptation. By combining satellite and geo­spatial data with machine learning, Kimoni provides a cost-efficient and scal­able solution to comply with the EU Taxo­nomy and optimize climate-friendly invest­ments.

Klimaneutrale Stadt

ThermEcoFlow: Innovative technologies and methods for indoor air comfort and energy optimisation in thermal spa buildings

ThermEcoFlow aims to optimize the energy consumption of thermal spas facilities through improved simulation models and AI-supported control systems. By precisely modelling airflow, humidity loads, and evaporation, combined with AI-driven regula­tion, the project seeks to reduce energy consumption and CO₂ emissions in the long term while enhancing indoor comfort for visitors.

Klimaneutrale Stadt

Circular Bio Floor- Floor construction made from biomaterials

In this project biogenic building materials from wood industry waste and geopolymer binders are developed that can be used as tamped fill or 3D-printed dry-screed elements in timber construction. These materials offer functional benefits and an excellent eco-balance, contribute to the conservation of forests and enable the production of separable and reusable floor segment panels using digital manufacturing technologies. That significantly reduces the consumption of primary raw materials.

Stadt der Zukunft

SCI_BIM - Scanning and data capturing for Integrated Resources and Energy Assessment using Building Information Modelling

The aim of the project is to increase the resources- and energy efficiency through coupling of various digital technologies and methods for data capturing (geometry and materials composition) and modelling (as-built BIM), as well as through gamification.

Klimaneutrale Stadt

BIOCHARm - Assessing the Potential of Biochar in Construction as a Contribution to Climate Neutra­lity

The project investigates the potential and limits of the use of biochar in the Austrian construction sector. The participating organisations gain valuable insights into the availability and suitability of biogenic material flows, the possible uses of biochar and the possibility of storing atmospheric carbon in the construction sector.

Klimaneutrale Stadt

BIM.sustAIn - Artificial Intelligence to enhance sustainability in BIM projects

The construction sector faces growing challenges in meeting sustainability require­ments, particularly during early project phases where key decisions on materials, construction methods, and energy concepts are made. This project aims to leverage AI and BIM to optimize sustainability assessments by providing precise CO₂ balance forecasts and material suggestions. The innovative approach reduces manual effort and supports the implementation of climate-neutral construction, contributing significantly to Austria’s climate goals.

Klimaneutrale Stadt

IMPACT – Hybrid hydraulic and electric charging of stratified compact hot water

The IMPACT project is developing an innovative decentralised hot water storage tech­nology for large-volume urban housing. Thanks to a novel, flat design, the sys­tem enables highly efficient utilisation of renewable energy sources such as heat pumps and photovoltaics. The aim is to create a cost-efficient, sustainable solution for decarbonising water heating that is optimised using intelligent energy manage­ment and machine learning methods.