

European harmonization of methods to quantify methane emissions from biogas plants

Marlies Hrad

University of Natural Resources and Life Sciences, Vienna (BOKU)

Department of Water – Atmosphere - Environment

Institute of Waste Management

Background and motivation

- need for robust and reliable monitoring of CH₄ emissions from biogas plants
 - environmental, safety and financial issue
 - data basis/emission inventories
 - reflect and improve operational efficiency, acceptance
- BUT: CH₄ losses can arise from various plant components (several source types)
 - Stationary and diffuse emission sources
 - Point and area sources, time variant sources
- various attempts to quantify single & overall emissions
 - → difficult comparison of emission factors derived from different methods

Research project MetHarmo

- MetHarmo European harmonization of methods to quantify methane emissions from biogas plants
- Project duration: 01.03.2016 28.02.206
- Project coordination: Deutsches Biomasseforschungszentrum
- Project partner:

Research project MetHarmo

- Bioenergy
- MetHarmo is funded in the framework
 of ERA-NET (European Research Area) 9th call
- Project administration by the national funding agencies
 - Germany: Fachagentur Nachwachsende Rohstoffe e.V.

(Agency for Renewable Resources)

Austria: Klima- und Energiefonds

(Climate and Energy Fund)

- Sweden: Swedish Energy Agency
- Overall funding: ~ 760,000 EUR

Aim of the project

- Method harmonization for standardized guideline using onsite and remote sensing approaches
 - Evaluation of method accuracy
 - Categorization of results from different methods (transferability of results)
- Recommended use of methods (written guideline on how to measure and calculate methane emissions)
 - Performance of methods (need for instrumentation, calibration, qualification of personnel)
 - Instrument placement, atmospheric condition, need for topographical conditions
 - Required monitoring period, operational state of biogas plant

Content of project

- Two international workshops
 - Workshop in Leipzig (2016) Introduction of project and methods
 - Workshop in Malmô (2018) Presentation of project results
- Two intercomparison campaigns in 2016 and 2017
 - First measurement campaign includes the participation of a subcontractor using a DIAL system (Differential Absorption LIDAR)
- Extended emission measurements in Germany and Austria (transferability of the improved method to other biogas plants under different conditions)

Measurement approaches

Measurement approaches

On-site

- Leakage detection
- Quantification of single sources
- Summation of single emission rates
- Use of enclosure techniques, gas cameras

Remote sensing

- Determine whole site emissions
- Up- and downwind measurements of CH₄ concentration
- Depend on transport processes in the atmosphere
- Do not affect plant operation
- Dispersion modelling or tracer gas comparison

On-site methods

- Leakage detection:
 - IR camera
 - Hand-held methane laser

Encapsulated leakage

Enclosure techniques

$$E = \dot{V} \cdot \rho \cdot (c_{out} - c_{in})$$

- (Gas formation tests)
- Measurement teams

bioenergy2020+

Fresh air

© DBFZ

Sample point

Remote sensing approaches

Inverse dispersion modelling:

up- and downwind concentration measurements (OP-TDLS) combined with meteorological data using a dispersion model

Measurement teams:

Remote sensing approaches

Mobile tracer dispersion:

controlled gas release combined with measurement of downwind concentration (C₂H₂ as tracer and CH₄)

Measurement team:

Remote sensing approaches

DIAL – Differential Absorption Lidar

backscatter laser-based system to determine location and concentration of methane (at ranges up to 3 km)

Measurement team:

Method comparison

	On-site	Remote sensing
Advantages	 Localization and quantification of single sources Derivation of mitigation strategy Weather independent Low detection limit (for total site emissions) 	 Determination of whole site emissions Do not affect plant operation Time effort independent of plant size Continuous/long-term monitoring possible (with high resolution) No prior identification of single source needed
Disadvantages	 Time effort dependent of plant size (time consuming on large plants) Possibility to miss single sources (or that no all sources are accessible) Measurement over short-time period Assuming constancy of emission in the summation Influence of measurement on emissions 	 No identification of single sources Depending on weather conditions (e.g. wind direction, wind speed, etc.) Limited in complex topographical and infrastructural conditions (e.g. forest areas, hills, dense array of buildings) Uncertainty of dispersion model/tracer placement

Thank you for your attention!

University of Natural Resources and Life Sciences, Vienna (BOKU)

Department of Water – Atmosphere - Environment

Institute of Waste Management

abf@boku.ac.at, www.wau.boku.ac.at/abf.html
Tel.: +43 (0)1 318 99 00, Fax: +43 (0)1 318 99 00 350
Muthgasse 107/3.Stock, A-1190 Vienna

