The European energy system is facing great challenges with respect to the enhanced utilization of renewable energy sources (RES). Limited capacities of the power network infrastructure due to the intermittent provision of RES are a major obstacle for achieving even higher shares of decentralized energy production. In addition to an appropriate adaptation and modernization of the power network, the distribution network plays a decisive role in future structures and intelligent system solutions, which offers a range of options for the integration of a decentralized generation (DG) of RES. The approach addresses the technical, economic and ecological aspects of smart grids, which serve as an interface between DG and the consumer.

The evaluation includes:

a. the analysis of the maximum DG into the LV-grid,
b. the evaluation of necessary preconditions for the enhanced integration of decentralized, small scale facilities, and
c. the economic and ecological assessment of an enhanced integration of RES into intelligent power grids.

Economic analysis

<table>
<thead>
<tr>
<th>Component</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photovoltaic (PV)</td>
<td>120.000</td>
<td>80.000</td>
<td>-3.000</td>
</tr>
<tr>
<td>Costs transformer</td>
<td>0</td>
<td>3.000</td>
<td>4.500</td>
</tr>
<tr>
<td>Costs grid losses</td>
<td>1.000</td>
<td>2.000</td>
<td>3.000</td>
</tr>
<tr>
<td>Costs grid SYMM 1</td>
<td>4.000</td>
<td>6.000</td>
<td>8.000</td>
</tr>
<tr>
<td>Costs grid SYMM 2</td>
<td>6.000</td>
<td>8.000</td>
<td>10.000</td>
</tr>
<tr>
<td>Costs grid SYMM 3</td>
<td>8.000</td>
<td>10.000</td>
<td>12.000</td>
</tr>
<tr>
<td>Costs grid SYMM 4</td>
<td>10.000</td>
<td>12.000</td>
<td>14.000</td>
</tr>
<tr>
<td>Costs grid SYMM 5</td>
<td>12.000</td>
<td>14.000</td>
<td>16.000</td>
</tr>
<tr>
<td>Costs grid SYMM 6</td>
<td>14.000</td>
<td>16.000</td>
<td>18.000</td>
</tr>
<tr>
<td>Costs grid SYMM 7</td>
<td>16.000</td>
<td>18.000</td>
<td>20.000</td>
</tr>
</tbody>
</table>

Methodological approach

Technical analysis
- Selection of network structures
- Development of system solution scenarios
- Consumer behaviour: measured load profiles
- Supply behaviour: photovoltaic (PV) profiles
- Symmetric, asymmetric and single phase feed-in
- Simulation model based on load flow analysis

Economic and ecological analysis
- Based on the technical results -> potentials of scenarios
- Results based on additional effects to reference scenario (existing grid incl. Max. PV)
- Identification of necessary network infrastructure components
- Economic eval. based on typical investment and operating costs
- Ecological eval. based on the emission reduction potential

Investigated scenarios

- GRID_1: Doubling existing network
- GRID_2: Consistent cabling cross-section (150) for network
- GRID_3: Consistent cabling cross-section (150) for line 1-2-3-4
- INNO_1: Reactive power (Q) control funct. of voltage (U)
- INNO_2: INNO_1 + communication between PV facilities
- INNO_3: Reactive power (Q) control funct. of active power (P)
- INNO_4: INNO_1 + adapted INNO_2 (func. of grid topology)
- INNO_5: Active power (P) control funct. of voltage (U)
- INNO_6: INNO_5 + communication between PV facilities
- INNO_7: Adaptable distribution transformer
- INNO_8: INNO_1 + INNO_5
- INNO_9: INNO_7 + INNO_8

Results

- Economic and ecological assessment for symmetric, asymmetric and single phase feed-in of PV
 - Symmetric feed-in -> best case
 - Single phase feed-in -> worst case

Further steps

- Elaborated assessment of a second network structure (mix of households and other buildings)
- Detailed cost/revenue analysis from PV
- Analysis further DG technologies
- Extrapolation of results for Austria