Search results

There are 14 results.

Stadt der Zukunft

AFOM - Automatic failure and optimisation analysis by data-acquisition

In the project, methods will be developed for analysing measured value curves to detect changes in operation or failures in the system. By integrating BIM data of buildings, corresponding models will be generated to validate the heating, ventilation, and air conditioning (HVAC)-networks, which will be used for analysis.

Stadt der Zukunft

BIM2BEM Flow - Continuous BIM-based energy efficient planning

Automated integration and assignment of exchange requirements between the design and simulation programs, based on the elaborated exchange information requirements, should enable continuous energy efficiency planning along the design phase.

Stadt der Zukunft

BIMpeco - Environmentally relevant product data in collaborative BIM environments

Construction products can pose a risk to the environment and health due to their pollutant content or releases. In the BIMpeco project, workflows and data structures for digital information management of this environmentally relevant product data are developed. For this purpose, the new ISO standards ISO 23387 and ISO 19650-1 are tested and synchronized with established process flows. The project results will be made available on an open-source basis and can be integrated into any Common Data Environment (CDE) that complies with the standards mentioned. The BIMpeco project is the first to lay the foundations for product information management of environmentally relevant properties in the CDE, covering the entire lifecycle and supply chain.

Stadt der Zukunft

BIMstocks - Digital Urban Mining Platform: Assessing the material composition of building stocks through coupling of BIM to GIS

The main goal of BIMstocks is the development of a method for the digital capturing of the material composition of the existing building stock for follow up modelling of an Urban Mining Platform as well as for the prediction of the recycling potentials.

Stadt der Zukunft

Beyond - Virtual Reality enabled energy services for smart energy systems

Collaborative R&D project to develop the next generation energy services with the interplay of various technologies: Virtual Reality (VR), machine learning, physical simulation and Internet of Things (IoT) platforms.

Stadt der Zukunft

CO2-Demobau - Exploration of the feasibility of carbon-neutral model construction sites

By highlighting green innovations, networking with stakeholders in the construction industry and applying the findings of the previous study "CO2 neutrale Baustelle", the foundation is set for future carbon-neutral model construction sites. These construction sites will serve as best-practice examples in the fields of contracting, construction operations organization and technology.

Stadt der Zukunft

KityVR - Artificial intelligence techniques to implement CityGML models and VR visualization

The goal of the project is to link 3D city models and virtual reality for energy-relevant applications as key-enabler for digital planning, construction and operational management. Missing data will be calculated using statistical enrichment methods.

Stadt der Zukunft

OctoAI: The next generation of high-performance edge AI for smart buildings

Current IoT (Internet of Things) solutions for buildings depend almost exclusively on cloud infrastructure and cloud-based services. In the OctoAI project, we are developing the next generation of high-performance Edge AI (Artificial Intelligence) for smart buildings. In OctoAI, we combine the concept of edge AI with user-centric energy services and test two edge-ready applications.

Stadt der Zukunft

TWIN - Digital twins for sustainable buildings

Digital building twins have hardly been used in practice due to an often unfavourable cost-benefit ratio. The aim of the TWIN project is to bring together use cases of digital building twins with a high ecological and economic impact in order to prepare application scenarios with great implementation potential.

Stadt der Zukunft

VR4UrbanDev - Virtual Reality as an innovative, digital tool for the integrative urban development of the future

Virtual reality (VR) has the potential to make complex issues more quickly comprehensible and directly tangible. In the VR4UrbanDev project, we are using this potential for energy planning processes for buildings and urban districts. On the basis of test areas, we develop methods for importing and visualising energy-related real-time data and simulation data in the VR environment.

Stadt der Zukunft

baubehoerde.at - Development of a Vision 2030 for a Digital Building Authority and Recommendations for Action in Austria

In Austria, planning permission applications are submitted and managed largely manually. The aims of the baubehoerde.at project are to evaluate the potential and limitations of digitizing building approval processes and to create a Vision 2030 strategy for a digital building authority.

Stadt der Zukunft

digiactiv - digital transformation for more interactivity in MEP-(mechanical, electrical and plumbing-)planning

The aim of the digiactiv project is to improve the interoperability between the different stakeholders in the building construction sector using open and neutral semantic data models. With digital transformation processes, digiactiv helps to increase the quality of planning and the operation of buildings, as well as to minimize the interface risk between various stakeholders.

Stadt der Zukunft

mAIntenance - Investigation of AI supported maintenance and energy management

Optimized & reliable operation of Heating, Ventilation and Air Conditioning (HVAC) systems in terms of maintenance and energy management, using predictive, data-based & self-learning error detection. Conceptual design and prototype implementation of an AI (Artificial Intelligence) tool for automated data analysis and recommendations for technical building operators.

Stadt der Zukunft

openBAM - Open Building Automation Modelling - Open modeling of building automation over the entire building life cycle

Platform-independent modeling of control and regulation logic for detailed study of building automation systems involving construction and building technology. The result enables the analysis of energy saving potentials through building automation before construction.