Search results
There are 163 results.
Sorption cooling and air dehumidification device
Solar-assisted air-conditioning in combination with comfortable controlled ventilation systems soon possible and affordably for building owners. With a new part DEC-systems should become acceptance.
StirliQ+ Component development of the expansion Stirling generator with supercritical fluid as working & lubrication medium
Technical research and further development of details or components of the novel StirliQ engine, which has the potential to overcome the technical hurdles of conventional Stirling engines. On the basis of simulations as well as a laboratory plant, a narrowing down of the process parameters with regard to a resilient pre-dimension of apparatus components is carried out.
Study of the Potential of Popcorn-Technologies for the Austrian Energy System
Syn[En]ergy: Development of Potential Synergy Effects between the Interdependency of Urban Planning goals and Photovoltaic Usage on Open Urban Landscapes
Open spaces such as parking lots, brownfields and some categories of recreation areas offer an underutilised potential for photovoltaics in urban regions. In the course of Syn[En]ergy an inter- and transdisciplinary approach potential synergies and conflicts with other use demands were investigated, a typology and practical solutions for selected areas with regard to requirements from economy, urban planning and design, legal as well social aspects developed, and then evaluated by stakeholders from enterprises, administration and the general public.
TEA-PUMP – Techno-economic Analysis of Thermoelectric Modules for Efficiency and Performance Enhancement in Heat Pumps for Residential Buildings
The TEA-Pump project explores the innovative use of thermoelectric elements (TEM) in compression heat pumps to enhance their efficiency and performance. Through a comprehensive techno-economic analysis, promising heat pump (HP) configurations for use in urban multi-family housing are identified. The project makes a significant contribution to the decarbonization of heating and cooling supply and supports the development of climate-neutral cities through energy-efficient, future-oriented heat pump technologies.
THERM-opti-BALCONY-P2 - Thermal Optimized Renovation of Balconies Phase 2: In-Situ-Pilot-Station
Pre-cast cantilever balconies represent a particular problem in the case of thermal rehabilitation of buildings. With the THERM-opti-BALKON-System a solution is currently being investigated under laboratory conditions. Phase 2 aims to create an in-situ-pilot-station. The most important object of study is the long-term behavior of the THERM-opti-BALKON-System.
THERM-opti-BALCONY: Thermal Optimized Renovation of Balconies
Pre-cast cantilever balconies represent a particular problem in the thermal renovation of buildings. The central goal of this project is the development of practical and cost-effective mounting solutions for the thermally decoupled reconstruction of balconies on building frontages and achieving a significant increase in the energy performance of the thermal renovation measure.
TOPS – Topology-optimised reinforced concrete slabs with digital formwork and reinforcement
The TOPS project is investigating material-efficient ribbed concrete slabs, which save up to 50% of the concrete used in conventional flat slabs by topology-optimisation. A 'file-to-factory' process enables the automated production of formwork and reinforcement using digital technologies. The construction method reduces CO₂ emissions and contributes to the decarbonisation of the construction industry.
Technology Platform Photovoltaic Austria
Between research institutions and the economic system the way has been paved to initiate joint R&D projects. Common research activities have been initiated and intensified to be able to position local companies in international niche markets for photovoltaics.
The Box - Thermal High Performance Decoupling - Next Generation Thermal Break Technology
The project pursues the overall strategic objective "solution of the problem-inducing heat bridge". For this purpose, the thermal bridging losses should be reduced by the factor of 15 in contrast to the state of the art. The significant increase in efficiency should rely on existing system solutions, but incorporating a new holistic view in terms of construction, geometry and materials.
The Green Parking Space – Utilization of urban parking areas for production of biomass
Many traffic areas in urban environments are actually used as such only a small fraction of the time. Subject of this project was to investigate the possibility of using those areas by additional integration of photobioreactors for the production of biomass, integrating such systems to the maximum extent into the urban substance and energy cycles.
TheSIS - Thermal renovation with internal insulation systems - investigation and development of moisture-proof solutions
Development of innovative solutions for the retrofit of the building envelope with internal insulation with a focus on the hygrothermal optimization of a moisture-adaptive vapor retarder in form of a paint coating. As a result, the moisture hazard related to the implementation of internal insulation systems is reduced and the energetic, comfort-related and economic advantages are made available.
ThermEcoFlow: Innovative technologies and methods for indoor air comfort and energy optimisation in thermal spa buildings
ThermEcoFlow aims to optimize the energy consumption of thermal spas facilities through improved simulation models and AI-supported control systems. By precisely modelling airflow, humidity loads, and evaporation, combined with AI-driven regulation, the project seeks to reduce energy consumption and CO₂ emissions in the long term while enhancing indoor comfort for visitors.
Thermo-Active Building Systems - Development of a Calculation kernel (TBA-CALC )
This project result will provide Austria with a uniform software environment for the simulation of thermo-active building systems in the form of a validated tool.
Thermocollect - Solar active facade system, using direct solar radiation for temperature conditioning of buildings
The new Thermocollect Energy-Facade System allows to utilize the solar radiation that hits the facade on a on-demand-basis. The system works with a mechanically active mechanism which selectively gathers the solar radiation and additionally can be used as a cooling and heating system according to the local requirements.
ThinkHome: Improved energy efficiency based on artificial intelligence in future homes
ThinkHome is a networked controlled home of the future with the ultimate goal to optimise energy efficiency and user comfort at the same time. On this way, smart interaction between all building services is of utmost importance. Goals of this project include the definition of a comprehensive knowledge base that holds all relevant building data, the evaluation of control strategies based on artificial intelligence and machine learning, as well as agent based software engineering.
Topview - Methodology for the efficient use of remote sensing data for climate change adaptation and spatial energy planning
Development of integrated approaches to sustainable energy and heat planning in urban areas by utilising remote sensing data and geo-information-based technologies for decision-making in the planning of energy infrastructures and climate adaptation measures.
URBAN STRAW - Fire protection conditioning of blow-in straw insulation material and its structural application for urban building classes 4 and 5
Investigation and development of fire protection conditioning of chopped straw blow-in insulation based on biogenic flame-retardants of similar building materials and their application methods. Use of the material as external thermal insulation in material-reduced prefab timber construction elements for urban building classes 4 and 5 up to 6 storeys.
Urban Mining - Energy and resource savings due to urban mining
The use of natural resources in long-lived products and buildings has led to the build-up of enormous urban material stocks. The present project analyses the potential of these urban mines to increase the resource efficiency of modern cities.
Urban wind energy - Development of methods for the assessment of small wind turbines in urban areas
The project "Urban wind energy" aims to create the basis for the assessment of roof-mounted small wind turbines (SWT) in urban areas. Therefore, methods for the characterisation of turbulent wind flow fields are developed and on the other hand the impacts of turbulent wind conditions with reference to selected turbulence indicators on the performance of small wind turbines are investigated. The overall aim of the project is to address the question how to evaluate sites in urban areas for the application of small wind turbines.