Search results

There are 129 results.

Stadt der Zukunft

URBAN STRAW - Fire protection conditioning of blow-in straw insulation material and its structural application for urban building classes 4 and 5

Investigation and development of fire protection conditioning of chopped straw blow-in insulation based on biogenic flame-retardants of similar building materials and their application methods. Use of the material as external thermal insulation in material-reduced prefab timber construction elements for urban building classes 4 and 5 up to 6 storeys.

Haus der Zukunft

Urban wind energy - Development of methods for the assessment of small wind turbines in urban areas

The project "Urban wind energy" aims to create the basis for the assessment of roof-mounted small wind turbines (SWT) in urban areas. Therefore, methods for the characterisation of turbulent wind flow fields are developed and on the other hand the impacts of turbulent wind conditions with reference to selected turbulence indicators on the performance of small wind turbines are investigated. The overall aim of the project is to address the question how to evaluate sites in urban areas for the application of small wind turbines.

Stadt der Zukunft

VAMOS - Casement windows with vacuum glazing: Performance-Monitoring for Building retrofit

Knowledge consolidation of the exploratory project VIG_SYS_RENO; This project focused on the application of vacuum glass in existing casement windows for purposes of energetic performance improvement of buildings. Expected results include new insights about and a guideline for the application and utilization of vacuum glass products in existing window systems.

Stadt der Zukunft

VERTICAL FARMING - Investigation on requirements of a Vertical Farm-prototype development for crop plant production

In the center of interest stands the investigation of fundamental principles for a new building typology – the Vertical Farm. Urban vertical food production can contribute to more energy efficient cities by concurrently reducing land use. Substantial influencing factors to achieve these goals are intended to be revealed.

Stadt der Zukunft

Vilipa - Visible light based Person and Group Detection in existing buildings

Evaluation of the technical and economic feasibility of an occupancy detection system based on the technology of visible light sensing, which, in combination with the building management system, should reduce the energy consumption of buildings. The goal is to implement low-tech/low-complexity solutions that can distinguish between individuals and groups based solely on the detection of visible light reflections.

Haus der Zukunft

Walchfenster04 - from a functional model to a serial production-oriented prototype

Technical preparation of the functional model from the window and facadesystem walchwindow04 to a serial production-oriented prototype. Developing the new production processes and technologies

Haus der Zukunft

WHISCERS. Whole House In-Situ Carbon & Emission Reduction Solution

Whiscers is a system for installing internal wall insulation with minimal mess, whilst the resident remains in the property. It involves measuring the walls in the property using a laser device that enables fast and highly accurate measurement. Information is then sent electronically to a computer controlled off-site cutting machine that is rapid, precise and mess-free.

Stadt der Zukunft

ÖKO-OPT-AKTIV - Optimised control and operating behaviour of thermally activated buildings in future urban districts

Development and simulation of scalable, distributed control strategies for the use of the storage effect of thermally activated components in buildings of future city districts for their energy supply by an energy centre.

Stadt der Zukunft

ÖKO-OPT-QUART - Economically optimized control and operating mode of complex energy networks of future city districts

In the project ÖKO-OPT-QUART energy-based, economic and control-orientated models will be developed in order to simulate the operating mode of complex, sustainable energy networks in city districts. For an exemplary configuration these models will be combined to an overall model which allows a realistic economic comparison of different control strategies. The final goal of the project is the development of a method for the systematic design of cost-optimized, predictive control strategies for complex energy networks in city districts.