Suchergebnisse für "Factsheet: Energietechnologien gestalten, die für alle sinnvoll und nutzbar sind"

Klimaneutrale Stadt

ECEE Climate Positivity

The ECEE Climate Positivity project aims to develop a climate-positive, scalable energy concept for commercial buildings. Through the innovative combination of building-integrated photovoltaics, component activation, and intelligent energy management, the project seeks to reduce CO₂ emissions, lower operating costs, and establish new business models for sustainable construction.

Klimaneutrale Stadt

Vitality City - Holistic energy strategies for cities in transition

Energy simulation of any size city (municipalities) based on the data from laser scanning and satellite analysis (Geodata) to obtain dynamical energy demands and available energy resources.

Klimaneutrale Stadt

Lahof/Lanserhofsiedlung - Path to Zero CO2 - climate-neutral demonstration building in relation to the neighbourhood

The aim is to develop and implement an innovative, climate-neutral neighbourhood concept with various sustainable energy and building technology components. A central element here is the climate-neutral demonstration building in timber con­struc­tion. This building is equipped with thermal component activation in solid wood and combines innovative energy concepts such as wastewater heat recovery, large photovoltaic systems and a hydrogen system for seasonal energy storage.

Klimaneutrale Stadt

FavoriteFlows – Innovative solutions for water and energy cycles in buildings for a climate fit city

Demonstration of detailed planning work and implementation of water cycles (building-integrated constructed wetland wastewater treatment) and energy cycles (wastewater heat exchanger) on a large residential apartment development for climate resilience, resource efficiency and high living standard.

Klimaneutrale Stadt

sustAIn4Build - AI competence for sustainable building management in climate neutral cities

The objective of the project sustAIn4Build is to increase energy efficiency and sustainability in the building sector by using artificial intelligence (AI). Industry-specific training programs support Austrian companies to develop a workflow for integrating AI technologies into their processes, enabling them to develop resource-saving, cost-effective and sustainable solutions. This strengthens their competitive­ness and contributes to the achievement of European decarbonisation goals.

Klimaneutrale Stadt

GreenFDT – Green Façade Digital Twin

In an interdisciplinary framework, the possibilities for optimizing the rear ventilation distance of façade greening elements and their potential impact on indoor and ur­ban climate are being investigated. The precise and comprehensive investigation of these relationships is made possible by the extensive deployment of sensors and measuring tools and furthermore the development and integration of a digital twin in a BIM model.

Klimaneutrale Stadt

SIMPLE AD Evaluator - S.I.M.P.L.E. Sustainable Integration Modeling and Predictive Leveraging Evaluator

The SIMPLE AD Evaluator fills an existing gap in sustainable local planning by provi­ding a low-threshold and collaborative evaluation tool for early planning phases. By linking questionnaires with System Dynamics models, the tool delivers well-founded decision-making foundations and customized sustainability checklists. This supports municipalities, project developers, and decision-makers in achieving a strategic and cost-efficient sustainable transformation from concept to implementation.

Klimaneutrale Stadt

ReSpace – Reclaiming Spaces

ReSpace is developing an AI-based model for identifying, categorizing, and activating sealed areas. Existing data sources (aerial and satellite images, mobile network data, land registry entries) are integrated and enhanced with dynamic analysis to derive evidence-based recommendations for action.

Klimaneutrale Stadt

Topview - Methodology for the efficient use of remote sensing data for climate change adaptation and spatial energy planning

Development of integrated approaches to sustainable energy and heat planning in urban areas by utilising remote sensing data and geo-information-based technologies for decision-making in the planning of energy infrastructures and climate adaptation measures.

Klimaneutrale Stadt

GREEN Stone: development of a cement-free concrete with recycled content for applications in landscaping

The Green Stone project aims to develop geopolymer concrete with recycled mate­rials in order to reduce the consumption of non-renewable resources and replace the cement content with alternative binders. The landscaping industry in particular requires lightweight, durable and weather-resistant materials.

Klimaneutrale Stadt

fERNkornSAN – decarbonization and renovation with renewable materials of the "Gründerzeit"-building Fernkorngasse 41

Using the example "Gründerzeitgebäude" in Fernkorngasse 41, 1100 Vienna, technical challenges and issues related to phasing out gas and oil as well as adapting to climate change are investigated. A particular focus is placed on the use or resource-efficient and ecological building materials and highly efficient technologies. The results should be the basis for the use for further projects.

Klimaneutrale Stadt

CEPA-Connect

The CEPA energy facade is an innovative building refurbishment system with an external active energy level. The aim is to revolutionize the refurbishment market. The development of the system focuses on holistic solutions for the thermal-energetic refurbishment of buildings.

Klimaneutrale Stadt

Abwärme_4_Kapfenberg - 100 % industrielle Abwärmeauskopplung Kapfenberg

The project aims to explore the feasibility of maximizing industrial waste heat extraction into the district heating system of the municipality of Kapfenberg to foster the defossilization path.

Klimaneutrale Stadt

iLESS - Intelligent load profile analysis to maximize self-consumption of solar power

The goal is to reconstruct the individual contributions of various devices from existing load profile curves. This problem is of fundamental importance in the context of maximizing self-consumption of solar power by private households.

Klimaneutrale Stadt

BOSS - Building Energy Systems on causal reasoning

The project develops novel Causal AI methods for automated fault detection in buildings. It aims to derive semantic structures from time series data and transparently model cause-effect relationships. This provides the foundation for scalable, explainable FDD solutions to reduce energy consumption and emissions in the building sector.

Klimaneutrale Stadt

AI4FM - Artificial Intelligence for Facility Management

AI-based anomaly and fault detection in buildings. Digital twins of buildings with simulation models for testing and optimizing rule-based fault detection methods. Mining of the recorded time-series data from existing Building Management Systems to train Machine Learning models for fault detection.

Klimaneutrale Stadt

RCC2 - Life cycle assessment of heatable formwork for CO2-reduced and climate-neutral concrete

Experimental development of innovative formulations of CO2-reduced concrete and heated formwork to support early strength development in wintry temperatures.

Klimaneutrale Stadt

MokiG: Monitoring for climate-neutral buildings

The aim is to develop and implement an innovative monitoring concept to demon­strate the achievement of climate neutrality in buildings. A central element here is the integration and linking of various data sources. The basis for this is a data mesh structure, artificial intelligence and the creation of digital twins. Finally, the metho­dology will be tested on real buildings and discussed with users.

Klimaneutrale Stadt

Kimoni – Artificial Intelligence for Monitoring the Performance of Green Infrastructure

Kimoni develops an AI-based tool for high-resolution analysis and assessment of Green Infra­structure for climate change adaptation. By combining satellite and geo­spatial data with machine learning, Kimoni provides a cost-efficient and scal­able solution to comply with the EU Taxo­nomy and optimize climate-friendly invest­ments.

Klimaneutrale Stadt

ThermEcoFlow: Innovative technologies and methods for indoor air comfort and energy optimisation in thermal spa buildings

ThermEcoFlow aims to optimize the energy consumption of thermal spas facilities through improved simulation models and AI-supported control systems. By precisely modelling airflow, humidity loads, and evaporation, combined with AI-driven regula­tion, the project seeks to reduce energy consumption and CO₂ emissions in the long term while enhancing indoor comfort for visitors.