Search results
There are 90 results.
Innovation lab act4energy
The Innovation Lab act4energy is set up as an innovation laboratory project. Its focus is to solve the problems of renewable energies integration with a focus on photovoltaic power paired with local consumption, linked to the the high fluctuation of renewable energies.
Itz Smart – Carbon neutral city district development Itzling – Implementing innovation and technology via co-operative process design
The goal of the project “Itz Smart” is to tie in with existing activities and to consistently develop Itzling as a residential location further. In the test and demonstration area, sustainable residential quarters with trendsetting solutions for mobility are developed in the zone of the transport axis (railway and Schillerstraße) and along the local supply axis (Itzlinger Hauptstraße). The consideration of housing and mobility with regard to the aspect of “city of short ways“ also entails a discussion of determined mixed utilisation and the development of such residential quarters.
IÖB-ENERGY - Public procurement for intelligent urban energy solutions
Assessment of the potential for pre-commercial procurement in the Smart City energy sector in Austria in the areas of innovative building technologies, urban energy systems and systems for urban planning. The results will serve as the basis for recommendations for future priority setting for public procurers.
Joining Cards - Investigation of de-constructable fastening and joining techniques for the development of mono-material interior systems made of cardboard
Strategic examination of cardboard products and paper-based materials for the development of de-constructible interior systems and the definition of building components and their interfaces. The result forms the basis for further research projects in the form of a comprehensive knowledge gain.
LINE-FEED - Plug-in Photovoltaic Storage for the Wall Socket
The project LINE-FEED develops technologies that are required for a photovoltaic storage system which can be installed by anybody by simply plugging it into a wall socket. The aim is to create a storage system for households in urban areas that do not have the possibility to install a photovoltaic system themselves.
Lahof/Lanserhofsiedlung - Path to Zero CO2 - climate-neutral demonstration building in relation to the neighbourhood
The aim is to develop and implement an innovative, climate-neutral neighbourhood concept with various sustainable energy and building technology components. A central element here is the climate-neutral demonstration building in timber construction. This building is equipped with thermal component activation in solid wood and combines innovative energy concepts such as wastewater heat recovery, large photovoltaic systems and a hydrogen system for seasonal energy storage.
LessIsMore - Energy efficient human centric lighting by innovative components and daylight integration
Human Centric Lighting (HCL) is focused on the positive visual and non-visual (biological) effects of light on humans, but is wasting energy by the inefficient use of components and daylight. In LessIsMore an exemplary pilot installation will be developed and evaluated.
LooPi - the autonomous unisex plant-based urinal for public spaces
Application of the prototype in the operational environment for a period of 20 months. Technical monitoring thoughout the cycle of seasons, user interviews concerning satisfaction, evaluation of the potential use of LooPi material streams as soil conditioner for organic farming. Results serve the development towards market maturity.
MaBo - material saving in bored piles - a contribution to reducing CO2-emissions in the construction industry
Development of an innovative method for saving material in bored piles in order to reduce CO2 emissions in the construction industry. By optimizing the construction methods and using alternative materials, the sustainability of the foundation bodies is to be improved.
MehrWertStrom 2030 - PV-Community system - Exploring a participatory pilot project with regional added value for structurally weak regions
The "MehrWertStrom 2030" project analysed the legal, technical, organizational and economic feasibility of PV community joint venture facilities on multi-party buildings including the added value for structurally weak regions and developed innovative solutions related to organization, financing and realization.
Multi-WP – High-efficiency multivalent heat pump concepts for the thermal use of external air with geothermal storage
Optimization of multi-WP systems consisting of air-source heat pumps and geothermal storage with regard to increasing flexibility and efficiency from 30 kW for individual buildings as well as neighbourhood solutions and addressing aspects such as PV utilization optimization, mode of operation, utilization conflicts and noise pollution from air-source heat pumps. The project will establish the use of the heat source external air in combination with seasonal storage as a particularly efficient alternative for heating, cooling and hot water supply.
P2PQ - Peer2Peer im Quartier
The research project Peer2Peer im Quartier deals with applications optimizing the selfconsumption of PV-generated energy within urban quarters by enabling peer-to-peer relations among energy prosumers based on Blockchains. Aim is to develop and validate these applications in real operation.
PVOPTI-Ray, Optimization of reflecting materials and photovoltaics in urban environment with respect to energy balance and bioclimate.
Within the scope of the project PVOPTI_Ray the influence of reflection and energy balance on the performance of building integrated photovoltaics (PV) in complex urban environment have been investigated. Equally the influence of PV modules and of the energy conversion of solar energy at the PV module surface has an impact on micro climate and therefore also on pedestrians who are exposed to the radiation fluxes. This was also investigated.
Photonic Cooling – Efficient cooling of buildings through the use of photonic
Within the scope of the project a photonic cooling approach was investigated and evaluated in terms of feasibility and cost efficiency for building applications. In particular cost-efficient photonic surfaces and concepts were investigated which need to have a high reflectivity in of the incident solar radiation (>97%) and a high emission coefficient within the spectral range of 8 – 13 micrometer in order to enable the emission of heat into the sky.
PowerShade - Development of electricity-generating shading solutions for energy-flexible buildings in urban space
The main goal of the cooperative R&D project "PowerShade" is the development of low-cost and universally usable electricity-generating shading solutions for energy-flexible buildings in urban space.
Probing for PV façade systems made of lightweight plastic modules with reversible fittings for new and old buildings (PV-FAS_light + easy)
Probing for a new, simple, cost-effective and building-integrated PV facade system made of plastic PV modules through initial investigations for fixing technology, for building physics, for fire protection and for electrical engineering concerning the usability, the areas of applicability and the yield and application potentialfor new buildings and for existing buildings.
P³Power - Plug&Play Storage of Photovoltaic Power
The core of the project P³Power is the measurement technology NetDetection, which is able to detect the power consumption of a household from any point, e.g. a regular wall socket. Based on this technology a plug&play powerplant, consisting of photovoltaics and battery pack, is realized. The system is able to guarantee 100% self-consumption within flexible aggregates (from single households to whole communes) without any changes of existing infrastructure. The measurement technology will be implemented into digital hardware, evaluated comprehensively in lab and household environment and subsequently new energy service business models are developed.
RAARA - Residential Area Augmented Reality Acoustics
Populations with high exposure to noise emissions will generally agree: Noise means trouble. The aim of project RAARA is to develop a simple, intuitive albeit accurate method for reducing noise imissions in urban areas. This method involves placing a noise-source into its planned real-world destination prior to actual installation, by means of augmented reality. The ensuing sound-imissions are then made tangible by means of sound effects and coloured visualizations. This exceptional approach will facilitate planning for heating and cooling devices and thus reduce noise pollution in urban areas. This, in turn, can contribute to an increase in societal acceptance and investment in renewable energy.
RCC – Reduced Carbon Concrete: Implementation of CO2-redudes concrete in construction sites
The objectives of the present project "RCC - Reduced Carbon Concrete" were to test the current knowledge about the temperature-dependent curing processes of performance concretes by concrete work on large components on the construction site, under summer and winter conditions, and in precast production. The results will be incorporated into construction practice and standardization work.
RCC2 - Life cycle assessment of heatable formwork for CO2-reduced and climate-neutral concrete
Experimental development of innovative formulations of CO2-reduced concrete and heated formwork to support early strength development in wintry temperatures.