Search results
There are 84 results.
IEA SHC Task 59/EBC Annex 76: Deep Renovation of Historic Buildings - Towards lowest possible energy demand and CO2 emission (nZEB)
The goal of Task 59 was to document international best practice examples (knowledge base), develop a multidisciplinary planning process, and develop holistic retrofit solutions for historic buildings. As a knowledge base, the Historic Building Retrofit Atlas (www.HiBERatlas.com) emerged from the project. In the HiBERatlas more than 55 best practice examples are documented. In addition to the management of Subtask A (Knowledge Base) and Subtask C (Conservation compatible retrofit solutions & strategies), innovative technical and organizational retrofit solutions, which have already been applied in national demonstration projects and tested in practice, have been incorporated and further developed through the Austrian participation.
IEA SHC Task 61/EBC Annex 77: Integrated Solutions for Daylighting and Electric Lighting
Lighting accounts for around 15% of global electricity consumption - intelligent coordination of daylighting and electric lighting solutions together with integral lighting controls enable significant energy savings. At the same time, the solutions must be optimally planned in a user-centered approach based on the visual and non-visual effects of light. The task analysed user requirements as well as existing technologies and design methods and documented exemplary implementations in case studies.
IEA SHC Task 62: Solar Energy in Industrial Water and Wastewater Management
The main objective of IEA SHC Task 62 was to increase the use of solar thermal energy in industry, to develop new collector technologies and to open up industrial and municipal water treatment as a new area of application with high market potential for solar thermal energy. The focus was on thermal separation technologies as well as technologies for solar water decontamination and disinfection. By combining the technologies with solar collectors, an innovative and economically attractive overall solution should be created for integration into industry.
IEA SHC Task 67: Compact Thermal Energy Storage Materials within Components within Systems
This Task aims to push forward the compact thermal energy storage (CTES) technology developments to accelerate their market introduction through the international collaboration of experts from materials research, components development and system integration. These technologies are based on the classes of phase change materials (PCM) and thermochemical materials (TCM). Materials from these classes will be studied, improved, characterized and tested in components.
IEA SHC Task 68: Efficient Solar District Heating Systems (Working period 2022 - 2024)
Regarding the use of CO2-free technologies for local/district heating systems, solar technologies in particular offer an efficient option. In this task, the opportunities and challenges are investigated in order to efficiently provide the required temperatures necessary for local/district heating networks through solar technologies, to promote digitalisation, to identify new business models and measures for cost reduction, and to spread the knowledge about the potential of solar district heating systems.
IEA SHC Task 69: Solar Hot Water for 2030
Solar water heating will play a crucial role in the decarbonization of the energy system for 2030 and beyond. IEA SHC Task 69 focuses on two technologies which are likely to play the biggest role in the global solar hot water market: thermosyphon and photovoltaic (PV) hot water systems. For these technologies global market surveys, systems and component optimizations, cost reduction analyses and revision of standards are being conducted to accelerate growth in target markets.
IEA SHC Task 70: Low Carbon, High Comfort Integrated Lighting
With the goal of decarbonization and sustainability of buildings in the sense of the circular economy, for integrated lighting systems the so far purely energy-based focus must be broadened to include the entire life cycle, with special consideration of visual and non-visual user requirements. In the task, strategic, technical, and economic information will be developed for the relevant stakeholders and networking activities will be offered.
IEA Solar Heating and Cooling (SHC)
The IEA's Solar Heating and Cooling program has been carrying out joint research activities in the field of solar thermal energy since 1977. The focus is on the active and passive use of solar energy for heating and cooling of buildings, solar district heating and solar heat for industrial applications.
IEA Wind Energy Systems (Wind TCP)
The mission of the Wind TCP is to stimulate co-operation on wind energy research and development and to provide high quality information and analysis to member governments and commercial sector leaders. The focus lies on technology development and deployment, as well as market and policy instruments.
IEA Wind Task 19: Wind Energy in Cold Climates (working period 2016 - 2018)
IEA Wind Task 19 deals with the challenges of the utilisation of wind energy in Cold Climates (i.e. under icing-conditions) and offers through global networking and mutual exchange of experience, the possibility of collecting and generating additional know-how. Aim of the subtask was to share experiences with international partners and standardising of icefall risk assessments. In addition, an evaluation report on the functionality of the new Vestas rotor blade heating system was published.
IEA Wind Task 19: Wind Energy in Cold Climates (working period 2019 - 2021)
The project deals with the challenges of wind power utilisation in icing conditions and provides a strong opportunity to generate new knowledge by global networking. Energiewerkstatt leads a subtask in the field of icefall risk and works on deriving rules of thumb for the risk assessment of the ice throw risk of turbines in operation during icing conditions.
IEA Wind Task 27: Small Wind Turbines in High Turbulence Sites
To ensure safety, reliability and productivity of small wind turbines (SWT) the experts of IEA Wind Task 27 developed a standard consumer label for small wind turbines. Since 2013 Task 27 is focussing on small wind turbines in high turbulence sites. By actively participating in the IEA Implementing Agreement Wind Energy Task 27, Austria’s stakeholders will become participants in the global small wind network. The establishment of a national working group as well as the organisation of an annual small wind conference in Austria will foster a durable collaboration and provide new impetus to the Austrian Small Wind Community.
IEA Wind Task 27: Small Wind Turbines in High Turbulence Sites (working period 2016 - 2018)
Since 2013 Task 27 is focussing on small wind turbines (SWT) in high turbulence sites. By actively participating in the IEA Implementing Agreement Wind Energy Task 27, Austria’s stakeholders will become participants in the global small wind network. The establishment of a national working group as well as the organisation of an annual small wind conference in Austria will foster a durable collaboration and provide new impetus to the Austrian Small Wind Community.
IEA Wind Task 27: Small Wind Turbines in High Turbulence Sites (working period 2018 - 2019)
By participating in the IEA Wind Task 27, a number of goals could be achieved, including the development of a site assessment scheme for wind turbines in areas with high turbulence intensities, the further development of the IEC 61400 standard, the participation in the “Compendium of IEA Wind TCP Task 27 case studies “And the update of the “Small Wind Power Report 2018” as well as activities such as holding the event “Small Wind Power Conference” in Austria.
IEA Wind Task 41: Enabling Wind to Contribute to a Distributed Energy Future (Working period 2019 - 2023)
IEA Wind Task 41 aims to create framework conditions for decentralised small and medium-sized wind turbines in order to establish them as a competitive and reliable technology for decentralised energy generation. A strategic focus in the pursuit of this goal is the revision of the IEC standard for wind turbines, taking into account the latest research results.
IEA Wind Task 52: Large-Scale Deployment of Wind Lidar (Working period 2022 - 2026)
Task 52 works towards the widespread adoption of wind LiDAR-systems and provides a strong opportunity to generate and spread knowledge and experience through global networking. Energiewerkstatt contributes to Task 52 with a comparative study of data availability of different LiDAR measurement principles under Alpine conditions and will take an organisational role in the creation of guidelines for the use of ground-based LiDAR in wind energy applications.
IEA Wind Task 54: Wind Energy in Cold Climates (Working period 2022 - 2024)
In order to achieve the development targets for renewable energies, generation plants will increasingly have to be installed at locations with more demanding technical and environmental conditions in the future. For wind energy, this means planning and operating turbines under icing conditions in many countries. The task investigates and evaluates technological solutions in this environment and publishes procedural recommendations in the form of technical reports and guidelines.
IEA-Bioenergy Task 42: Biorefining in a Circular Economy (Working Period 2016 - 2018)
The task deals with the analysis and dissemination of relevant information concerning biorefineries. In the last period the focus was on the development of an open-access tool for the TEE-evaluation (Technical/Economic/Environmental Assessment) of biorefineries.
IEA-PVPS Task 13: Performance and Reliability of Photovoltaic Systems (working period 2010-2018)
The Task 13 provides a common independent platform whereby quality aspects of PV systems and its components are elaborated and exchanged amongst the stakeholders, and disseminates this knowledge to different market actors.
IEA-PVPS Task 13: Performance, Operation and Reliability of Photovoltaic Systems (Working period 2018 - 2021)
The IEA Task 13 develops independent, internationally valid analyses and recommendations for the operation and reliability of PV systems and their components. The continuation of the Austrian participation ensures the flow of information back to the Austrian photovoltaic industry through international cooperation and strengthens Austria as a location for innovation and production.