Search results

There are 13 results.

Nachhaltig Wirtschaften

BATTBOX - BATTeryrecycling Best Operations by X-processes for circular battery ecosystem

In the BATTBOX project, e-mobility traction batteries are analysed for their cycle capability. The design and structure of battery systems are examined and evaluated regarding potential hazards. Based on this, the best possible handling and processing procedures are developed to improve and optimize the product life cycle regarding safety and recyclability.

Nachhaltig Wirtschaften

CircuPack - Recyclable materials for food packaging with a low ecological footprint

The goal of the project is to develop sustainable and environmentally friendly food packaging with an improved ecological footprint. It is important to develop a new process control that ensures both food compatibility and the sustainability of the resulting product.

Nachhaltig Wirtschaften

CycLR - Paint recycling and utilization of components

The CycLR project aims to implement a circular economy for water-based paints. A recycling process that enables the valorisation of recyclates is being developed, taking into account all parties involved in the value chain.

Nachhaltig Wirtschaften

EPSolutely - Development of a circular economy concept in the plastics industry using the example of EPS

In a system-wide cooperation of all relevant actors of the EPS value chain system, concepts, technologies and methods for an EPS circular economy are developed. The integration into an overall concept with optimised logistics and transport systems should enable the transformation of linear EPS value creation systems into a circular economy.

Nachhaltig Wirtschaften

IRONER - Potential for innovative and sustainable recycling of steel

Within the framework of the IRONER project, open questions were identified and the necessary innovations for increased steel recycling were developed. In addition to a material flow analysis, stakeholder interviews and ecological and economic considerations, the influences of increased steel recycling on metallurgical processes and material properties of steel products were examined.

Nachhaltig Wirtschaften

LightCycle

Fiber-reinforced thermoplastic composite components with low weight, so-called lightweight components for transport and mobility, lead to significant CO2 savings. Despite established production technologies and weight savings, further progress in lightweight construction is increasingly difficult because the sustainability of these products is currently not given due to the unresolved recycling problem, although the regulations require, among other things, 85 % recycling of an end-of-life vehicle.

Nachhaltig Wirtschaften

MeteoR – mechanical-thermochemical process combinations for the recycling of fine fractions from waste treatment facilities

In waste treatment plants large quantities of fine fractions are generated. Due to their heterogeneity and properties, these fractions are currently not used although they contain a whole range of materials that represent valuable resources. The aim of the project MeteoR is to enable the utilization of all components (mineral, metallic, and combustible) of fine fractions by combining mechanical and thermochemical processes, to close material cycles and to significantly contribute to the further development of the Austrian circular economy and the reduction of CO2 emissions.

Nachhaltig Wirtschaften

PVReValue – Holistic recycling of photovoltaic modules

The PVReValue research project is pursuing a new approach to the holistic recycling of photovoltaic modules, based on an innovative multi-stage composite separation process that is being developed in the course of the project. The multi-stage separation process and the novel combination of modern treatment processes are expected to achieve a recycling rate of more than 95 wt.-%.

Nachhaltig Wirtschaften

ReTarget - Re-manufacturing and re-purposing of high-quality sputter materials

The project objective is to reduce the energy input in the production of sputtering targets by at least 20 % by direct re-manufacturing of used, precious metal targets. In addition, the utilization rate will be increased from an average of 20-30 % to 70-80 % through a direct re-purpose approach, as well as by optimizing the sputtering process. This will allow a significant reduction of the footprint of the sputtering process.

Nachhaltig Wirtschaften

Road-to-Road/ Verschränkung neuartiger Methoden zur effizienten „Road-to-Road“ Inwertsetzung von Altasphalt

The planned combination of experimental and model-based methods for assessing/describing the behavior of asphalt shall enable the goal-oriented optimization of the performance/durability of recycled asphalt, with the resulting positive effects (CO2 balance, transport distances, landfill volume) being quantified within the project.

Nachhaltig Wirtschaften

SHyRE - Sulfuric acid and hydrogen production for the electronics industry through innovative recycling

In SHyRE, an innovative process for sulfuric acid recycling is being developed. The aim is to efficiently produce high-purity sulfuric acid and hydrogen by combining novel decomposition processes with electrochemical methods.

Nachhaltig Wirtschaften

UPTextIL - Upcycling cellulose from used textiles into high-strength filaments using spinning technology in ionic liquids

The aim of the project is to develop a process for spinning cellulose from used textiles using ionic liquids, to analyze potential impurities in this recycling material stream, and to develop strategies for their removal or avoidance during the spinning process. The project aims to lay the foundations for closing the material cycle of cellulose from used textiles.

Nachhaltig Wirtschaften

circPLAST‐mr Mechanical Recycling of Plastics: Mechanisches Recycling von Kunststoffen: From waste plastics to high‐quality and specification‐compliant recyclates

The flagship project circPLAST‐mr pursues the following 4 main objectives: (1) to identify and explore previously unused potential for mechanical plastics recycling, (2) to define and test key process steps for this on a laboratory/pilot scale, (3) to demonstrate the eco‐efficient marketability of increased recycled plastic volumes, and (4) to demonstrate the scalability of the laboratory/pilot process steps to industrial scale.