Search results

There are 136 results.

Energiesysteme der Zukunft

Transfer of technology and know-how for the initiation of fermentation gas net feed-in pilot projects.

Target group communication of the technical possibilities of fermentation gas net feed-in. Information preparation and reduction in planning complexity. Support and networking of potential future plant operators. Establishing a service office as contact point.

Haus der Zukunft

URSOLAR - Optimization of SOLAR energy usage in URban energy systems

URSOLAR provides decision makers with a roadmap for the integrated use of solar energy in urban environments. The roadmap shows, how photovoltaics- and solar-thermal installations can be used in an ecological, economical and socially optimal way whilst considering legal requirements as well as infrastructural conditions in typical city quartiers and stakeholder interests.

Energiesysteme der Zukunft

Upgrading of biogas for the gas distribution system of Salzburg

Development of a cost-effective cleaning unit, free of waste-products, for the upgrading of biogas to natural gas quality. Elaboration of the basis for a demonstration project injecting biogas into the gas distribution system of Salzburg.

Nachhaltig Wirtschaften

Urban Future - "Resource Efficient City of Tomorrow"

Challenges fort he cities of tomorrow with research issues referring to resource management, efficiency and technology development

Energiesysteme der Zukunft

Use of thermal cooling technologies and optimal combination with other heat energy consumers to use during summer the available district heating based on renewable energy sources: example of the municipality of Mureck

Optimal use of heating energy from a biogas CHP in the municipality of Mureck through demand side measures; the multifunctional energy centre Mureck on the way towards thermal air-conditioning: Multi-Mukli

Haus der Zukunft

Using buildings as energy storage - Monitoring project: Detached house H and detached house F Energy source wind power – Energy source solar power

Monitoring and comparison of performance of thermally activated building components in two similarly built, inhabited detached houses with different energy sources (wind and solar power). The functionality of energy supply through wind power or solar energy will be investigated as well as the verification of the practicability of self-regulating system control due to building temperature behaviour. The results provide an insight into the calculation assumptions, system control and feasibility of the smart grid technology.

Energiesysteme der Zukunft

Valuation models for future energy clusters considering market, technology and policy uncertainty - Case Study Biomass

Market liberalization, technological change and increasing complexity of international policy processes (e .g. climate negotiations) necessitate new approaches to evaluating investments in an uncertainty and risk-augmented framework. This project developed valuation methods from financial theory - such as real options valuation and portfolio optimization - to quantify the relative competitiveness of bioenergy chains and total energy systems.

Energiesysteme der Zukunft

Virtual Biogas - Biogas-Upgrading and Grid-Injection

Production of natural gas substitute from biogas and grid-injection to the public natural gas grid on an industrial scale using the two-staged membrane separation process gaspermeation. Design and erection of the upgrading plant at the biogas plant Bruck/Leitha as well as monitoring and optimisation of the operational characteristics.

Energiesysteme der Zukunft

Virtual Green Power Plant

Preparation and initiation of the implementation of a Virtual Green Power Plant based on renewable energy sources at the Program Responsible Party of oekostrom AG - The conception of a power utility within the Austrian power market.

Energiesysteme der Zukunft

Virtual power plants and DSM

For the cost efficient and lasting energy supply from ecological sources, wind, photovoltaic and biomass have to be integrated in existing grids. New methods for DSM and virtual power stations are investigated, to improve the control behaviour.

Energiesysteme der Zukunft

Virtual power plants for self-sustaining regions

Geographic methods for the combination of renewable energy sources to create "virtual power plants" and development of self-sustaining regions in terms of energy-balance and the Kyoto target.

Energiesysteme der Zukunft

Voltage stabilization by central reactive power control of biogas power plants (Virtual Biogas Power Plant)

A virtual power plant, combining 20 agricultural biogas plants is planned in the south-eastern part of the State of Styria (A). The aim of the project is to realize a central reactive power control system of the biogas plants. Active power of this biogas plants ranges between 1 and 3 MW. Specific goals of the project are increasing grid stability, decreasing long distance reactive power transmission, decreasing energy losses, and decreasing utility costs.

Haus der Zukunft

smart façade - energy potential of adaptive façade systems

A specially developed simulation model is employed to ascertain the energetic potential of adaptive façade systems. The dynamic behavior of the physical properties of the adaptive façade system reacts to both internal and external changing conditions. The goal was the development of an adaptive façade, which helps provide maximum comfort for the building occupants with minimum energy consumption.

Haus der Zukunft

solSPONGEhigh - High solar fraction by thermally activated components in an urban environment

Within this project the intensive use of thermally activated building elements (TABs) as an additional thermal storage in different buildings, with solar technologies (thermal, PV) preferred for energy supply, was investigated. The aim was to activate and use the thermal storage potential that is immanent in the building elements and thereby achieve solar coverage of the building's heat demand of nearly 100 %.

Haus der Zukunft

urban pv+geotherm - Innovative concepts for the supply of large volume buildings/ quarters with PV and geothermal energy

The use of renewable energies in inner city locations is mostly linked to higher costs andconsidered as problematic. The aim of this project was to optimize (cost and energy) heating (and where required, cooling) using geothermic and photovoltaic for an urban, densely-built development area. With the project´s findings it will be easier to ecologically and economically plan the use of renewable energies especially in urban areas.

Stadt der Zukunft

ÖKO-OPT-QUART - Economically optimized control and operating mode of complex energy networks of future city districts

In the project ÖKO-OPT-QUART energy-based, economic and control-orientated models will be developed in order to simulate the operating mode of complex, sustainable energy networks in city districts. For an exemplary configuration these models will be combined to an overall model which allows a realistic economic comparison of different control strategies. The final goal of the project is the development of a method for the systematic design of cost-optimized, predictive control strategies for complex energy networks in city districts.