All Projects

Here you can find all Research, Technology and Development (RTD) Projects from previous calls for tenders in the frame of the program "City of Tomorrow".

There are 438 results.

Stadt der Zukunft

GreenDeal4Real - Improving the thermal comfort in mixed-use areas through cost-effective green infrastructure

The aim of the project is to avoid overheating in summer by using innovative greening measures in the mixed residential and commercial area Aspernstraße/Lavaterstraße. The development of a guideline should facilitate the realisation of climate-sensitive projects from strategy to actual implementation and ensure a high degree of transferability to other areas.

Klimaneutrale Stadt

GreenFDT – Green Façade Digital Twin

In an interdisciplinary framework, the possibilities for optimizing the rear ventilation distance of façade greening elements and their potential impact on indoor and ur­ban climate are being investigated. The precise and comprehensive investigation of these relationships is made possible by the extensive deployment of sensors and measuring tools and furthermore the development and integration of a digital twin in a BIM model.

Klimaneutrale Stadt

GreenGEO - Data-based integration of climate change adaptation measures into spatial planning

Green and blue infrastructure (GBI) is a key instrument in the fight against climate change. Nevertheless, deciding where and in what form it should be used most effectively remains a challenge in spatial planning practice. The development of a digital model that links location-specific climate risk data with suitable GBI measure proposals will make this much easier and more objective.

Haus der Zukunft

GreenPlusSchool@urban - Highly efficient facade and roof greening in combination with PV; optimal solution for energy efficiency in overall environmental consideration

In this project, different building-greening systems and plant/substrate types, combined with various PV modules, had been examined on a Viennese school. The influence on the hygrothermal behaviour of the building, energy-saving potential, humidity, shading, noise reduction, water retention and heat island effect are being scientifically explained. The students of the school will also be involved.

Stadt der Zukunft

GreenTech-Renovation - Energetic Renovation of Glass Buildings of Architectural Value

The focus of the GreenTech-Renovation project was to find innovative solutions for the energetic renovation of architecturally valuable buildings with a high proportion of glass. A future-oriented building physics concept that includes the use of alternative forms of energy had been developed for this purpose. With ecological and social commitment, an intelligent usage concept could strengthen the energetic renovation concepts and guarantee their sustainability. The 10-Rs of the circular economy (Refuse, Rethink, Reduce, Reuse, Repair, Refurbish, Remanufacture, Repurpose, Recycle, Recover) will serve as a guideline.

Stadt der Zukunft

GrünStattGrau – Innovations for Greening Cities "The green living laboratory"

GrünStadtGrau represents the holistic of competence for green building technologies such as green roofs and living walls in Austria. It generates impulses for urban green infrastructure on buildings and links innovative products and projects, supports through know-how and analysis for implementation processes. GrünStattGrau guides urban and participatory strategies from development to implementation.

Klimaneutrale Stadt

HEATbucket - Urban underground thermal energy storages to enable energy transition

In urban areas, the heat supply and cooling of buildings is one of the key challenges in the course of the energy transition. With HEATbucket, a structural engineering solution is to be investigated for the realisation of underground heat storage in built-up areas. In addition to the technical challenges, the focus is on the general feasibility and the impact on the subsoil and groundwater.

Stadt der Zukunft

HEDWIG - Collection of measurement data to assess the impact of green buildings

HEDWIG aims for the assessment of effects from green roofs and facades on buildings by using monitoring data referring to microclimate and building physics. The objective is to define validated vegetation parameters and performance indicators on indoor and outdoor level and on microclimatic relevant street space level. Standardised indicators, evaluation and analysis procedures will be elaborated.

Haus der Zukunft

HEROES - Houses for Energy- and ResOurce Efficient Settlements

A simplified method will be developed for the calculation of environ­mental indicators for so far not considered building elements (eg. constructions, which are not thermally relevant and HVAC-components). The theoretical principles for the calculation of the primary energy demand and the CO2-Emissions for operating and raising a building will be harmonized.

Haus der Zukunft

HOTSPOTS - Holistic thermographic screening of urban physical objects at transient scales

HOTSPOTS enables new insights and perspectives for city development. According to the project idea innovations in acquisition and sensing as well as densification of geo-referenced city related data are supple­mented by novel processing chains in city data analytics. Driven by an integrated scientific approach we develop a novel method in the selec­tion, evaluation and prioritization of infrastructural city development measures which is directly derived from sensed data hence reducing the risk of ad-hoc decisions or lack in impact.

Stadt der Zukunft

HPZ-Walls - High-performance exterior brick walls without additional thermal insulation

Sustainable multi-storey housing made of bricks can only be realised if the strength of thermally optimised vertical coring bricks is tripled. This is to be achieved by changing the hole pattern, namely by reducing the air gap from 8 to 4 mm. A success of the project will form the basis for the realisation of insulation-free, 8-storey residential and office buildings in brick construction.

Stadt der Zukunft

Heat Harvest - Harvest of urban solar excess heat from buildings and surfaces to avoid summer overheating in cities

"Harvest" of solar urban excess heat from building surfaces, sidewalks, streets and squares to avoid urban heat islands by lying flat absorber pipes, which are then fed into geothermal probe storage tanks for later use as a source for heating buildings.

Klimaneutrale Stadt

Heat islands Feldbach - Synergetic measures against overheating and heavy rain in preparation for an R&D&I project in Feldbach

Analysis and evaluation of the effects and cost-benefit ratios of synergetic measures with regard to over­heating and heavy rain in cities. Based on this, an imple­men­ta­tion plan will be deve­loped for a sub­sequent demon­stration in Feld­bach, which can be used in many similar cities.

Klimaneutrale Stadt

HeinrichBiCool - Climate-positive cooling and biodiversity through intensive greening of buildings

Using the example of an existing building of the University of Graz, currently affected by overheating, the project demonstrates what greening can achieve. Comprehensive monitoring of the indoor climate, building physics, energy requirements and biodiversity before and after the greening measures provides new scientific findings on the actual effectiveness of building greening.

Stadt der Zukunft

Hook-and-Loop fastener application for the technical building equipment

The aim of this exploration study is to explore a possible systematic change that will allow for a more universal application of Hook-and-Loop (or similar) fasteners in the construction industry, especially in building installation phase.

Stadt der Zukunft

HotCity - Gamification as a possibility to generate data for energy-oriented neighbourhood planning

The aim of the project was a functional test to determine whether an up-to-date data set of energy-oriented data can be collected for neighbourhood planning through gamification, cost-efficiently, quickly and reliably. This had been determined using the example of the potential determination of industrial and commercial waste heat sources in Vienna and Graz.

Stadt der Zukunft

Housing 4.0 - digital platform for affordable living

The main aim of this project is the development of an integrated framework for the digital platform "Housing 4.0"; thus supporting integrated planning and project delivery through coupling various digital tools and databases. Thereby, the potentials of BIM for modular, off-site housing assembly in order to improve planning and construction processes, reduce cost and construction time and allow for mass customization will be explored. The novel approach in this project is user-involvement; which has been neglected in recent national and international projects on off-site, modular construction, supported by digital technologies.

Klimaneutrale Stadt

IMPACT – Hybrid hydraulic and electric charging of stratified compact hot water

The IMPACT project is developing an innovative decentralised hot water storage tech­nology for large-volume urban housing. Thanks to a novel, flat design, the sys­tem enables highly efficient utilisation of renewable energy sources such as heat pumps and photovoltaics. The aim is to create a cost-efficient, sustainable solution for decarbonising water heating that is optimised using intelligent energy manage­ment and machine learning methods.

Stadt der Zukunft

INFINITE: INnovative FINancing models for sustaInable urban energy sysTEms

The goal of the INFINITE-project is to lay the foundations for a more wide-spread implementation of urban energy supply systems across buildings, using renewable energy sources produced in local supply units. At the same time the projects supports to reduce the demand for fossil fuels and higher-level energy infrastructure.

Stadt der Zukunft

INN'FIT4UM - Innsbruck "Fit4UrbanMission" - climate neutral Innsbruck 2030

Cities are the place where decarbonization strategies for energy, transport and buildings intersect. A few years ago, the municipality of Innsbruck set up a Smart City Group consisting of staff from the municipality, IIG, IKB and IVB to address this challenge. The goal of INN'F4UM is to develop a step-by-step plan to achieve climate neutrality for the city by 2030, building on an up-to-date representation of energy and resource flows together with the University of Innsbruck.