Search results

There are 4 results.

Haus der Zukunft

DALEC - Day- and Artificial Light with Energy Calculation

In the course of DALEC an online concept evaluation tool for architects, building engineers, lighting designers and building owners was developed. Although easy to use, the software accounts for the complex thermal and light processes in buildings and allows a simple evaluation of heating, cooling and electric lighting loads. Not only energy, but also user behavior were considered (e.g. in terms of glare protection) and visual and thermal comfort were evaluated. This novel and innovative, holistic approach makes sustainable and energy efficient building design possible for new buildings as well as refurbishment.

Stadt der Zukunft

Energy-Sponge: The Building as an Energy-Sponge - Electricity In - Heat Out

Innovative, dynamic control concepts had been developed which enable (air) heat pumps in combination with PV- or renewable grid electricity to use the building mass of a multi-familiy house as heat storage. User acceptance had been evaluated and possible business models had been developed.

Stadt der Zukunft

SocialLowCostFlex - Collaborative flexible low-cost energy supply concepts for social housing

This project aimed for feasible low-cost solutions, which allow residents of multi-party houses, with special focus on social housing to profit and participate in the energy transition process and associated trends (e.g. community generation units, exploitation of flexibility). The results of the project are low-cost concepts and business models of community generation units and utilization concepts, tested for their feasibility in a social housing complex. These concepts are based on special requirements of different lifestyles in low-income households and take the framework of social housing such as tenant fluctuation into account.

Stadt der Zukunft

SolCalc: Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps

Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps