Search results
There are 278 results.
IEA HPT Annex: Industrial High-Temperature Heat Pumps
High-temperature heat pumps are key elements in the decarbonisation of industrial process heat. In this project, existing activities to promote the market ramp-up of this technology will be continued. An existing technology database of manufacturers, their close-to-market or market-available products and demonstration projects will be continued. Moreover, recommendations for sector-specific solutions and training materials will be developed and disseminated to relevant target groups.
IEA HPT Task 41: Cold Climate Heat Pumps
The aim was to increase the efficiency of outdoor air heat pumps in cold climates in locations with low outside temperatures of up to -25°C. Newly developed heat exchanger concepts were tested and optimized regarding their icing behaviour. Different circuit modifications were modelled and simulation studies for low ambient temperatures were carried out.
IEA HPT Task 42: Heat pumps in smart energy grids for sustainable cities
The aim of Annex 42 is to analyse the technical possibilities as well as the economic/regulatory framework conditions of heat pumps for load balancing in smart grids, which are largely controlled by electricity supplier, and to investigate the impact on thermal consumers and possible potentials, in order to work out economic incentive models for load shifting and the benefits for energy supply companies and end customers on this basis.
IEA Heat Pumping Technologies (HPT)
The IEA Heat Pump Technologies programme develops and disseminates objective and balanced information on heat pumps, refrigeration technologies and air conditioning with the aim of exploiting the environmentally relevant and energetic potential of these technologies. This programme includes joint research projects, workshops, conferences and an information service (IEA Heat Pump Centre).
IEA Hydrogen (Hydrogen TCP)
The Hydrogen TCPs coordinates joint R&D activities with the aim of advancing the development and deployment of safe and sustainable technologies for the production, storage and supply of clean and affordable hydrogen and its derivatives for use in industry, mobility, heating and electricity.
IEA Hydrogen Task 41: Analysis and Modelling of Hydrogen Technologies
IEA Hydrogen Task 41 focused on the current representation of hydrogen and its utilization pathways in various models and approaches to improve them. Different levels of modelling were considered: Choice of appropriate modelling approach, structural representation of hydrogen use chains, as well as data needed for this.
IEA Hydrogen Task 42: Underground Hydrogen Storage
The IEA Hydrogen Technology Collaboration Program’s Task 42 on Underground Hydrogen Storage focuses on advancing the technical, economic, and societal viability of underground hydrogen storage in porous reservoirs, salt caverns, and lined-rock caverns.
IEA Hydrogen Task 45: Renewable Hydrogen Production
Due to the increasing pressure to replace fossil fuels with alternatives, the demand for renewable hydrogen supplies is also increasing. In this project, the state of the art of various established and innovative production paths will be collected, processed and then made available to the public.
IEA Hydrogen Task 48: Future demand of Hydrogen in Industry
The task provides an overview of the current and expected use of hydrogen in various industrial sectors. It evaluates the extent to which past and predicted developments in the use of hydrogen in industry deviate from the roadmaps of different countries. This information is important for both companies and policymakers and can support the ramp-up of hydrogen use and the decarbonization of the industrial sector.
IEA IETS Annex 11: Industrial Biorefineries (Working period 2020-2022)
With the increasing market share of bio-based products, the concepts of circular economy are highly relevant for the industry. In this context, biorefineries have established themselves as an explicitly integrative, multi-functional overall concept and essential hub in the use of biomass as a raw material source for the sustainable production of various (intermediate) products (chemicals, valuable materials, energy carriers).
IEA IETS Annex 15: Industrial Excess Heat Recover (Phase 3)
Within the framework of the IEA IETS Annex 15 (Phase 3), potentials for the use of waste heat as well as technologies for its integration are collected, bundled and processed through contributions from national research activities. The contributions of the Austrian consortium included technology development and integration concepts of heat pump and energy storage systems, risk analysis in the implementation of waste heat projects, and work on operation optimization and design of hybrid energy systems.
IEA IETS Annex 17: Membrane filtration for energy-efficient separation of lignocellulosic biomass components
The overarching goal of IEA IETS TCP Annex 17 is to strengthen the network of the Austrian membrane and biorefinery landscape.
IEA IETS Annex 17: Membrane processes in biorefineries (Working period 2020 - 2022)
The aim of IEA IETS Task 17 was to network and strengthen the Austrian membrane and biorefinery research landscape and to promote international exchange on energy- and cost-efficient separation technologies such as membrane distillation (MD), forward osmosis (FO), pervaporation (PV) and liquid membrane permeation (FMP) for the optimised use of lignocellulosic material in biorefineries. A guideline for the integration of emerging membrane processes was created for this purpose.
IEA IETS Annex 18: Digitalization, artificial intelligence and related technologies for energy efficiency and reduction of GHG emissions in industry (Working period 2020 - 2023)
The work in Task 18 enables the exchange of experience and knowledge between industry and research institutions from different countries. Through this cooperation best practices are identified and disseminated to promote the implementation of energy-efficient technologies in industry. In the medium and long-term, this contributes to reduce energy consumption and greenhouse gas emissions of industry.
IEA IETS Task 11: Industrial Biorefineries (Working period 2022-2024)
Biorefineries producing a portfolio of biobased products or bioenergy are the backbone of the growing bioeconomy. IEA IETS Task 11 aims to minimize greenhouse gas emissions to net zero along different biorefinery pathways. Tools and methodologies for increasing energy efficiency and the use of renewable energies are to be summarized and disseminated to relevant target groups.
IEA IETS Task 11: Industry-based Biorefineries Towards Sustainability (Working Period 2024-2026)
Industrial-scale biorefineries play a central role in the transition to a climate-neutral and integrated circular economy. The international IEA IETS Task 11 supports this development by investigating and evaluating technologies and concepts for reducing emissions and conserving resources.
IEA IETS Task 15: Industrial Excess Heat Recovery (Phase 4)
Excess heat recovery plays a crucial role in reducing emissions in industry. Through strategic planning and efficient process integration, companies can improve their energy efficiency and significantly reduce their carbon footprint. Task XV facilitates the international exchange of experience and knowledge between different companies. This identifies best practices to promote the implementation of energy-efficient technologies in industry.
IEA IETS Task 17: Membrane processes in biorefineries (Working period 2023 - 2025)
Biorefineries are essential for the transition from petroleum- to a biobased industry. The use of biomass as raw material for recyclable materials, chemicals and energy sources is essential and requires efficient and sustainable production processes. This project aims to strengthen national and international know-how transfer between research and development for membrane-based processes in biorefineries. The focus is on application, improvement and innovation in all aspects of membrane distillation.
IEA IETS Task 17: Membrane processes in biorefineries (Working period 2024 - 2025)
Membrane technologies in biorefineries are essential for industrial development in order to enable the transition to a bio-based industry. Biomass as a raw material requires efficient processes. The IEA IETS Task XVII (24-26) project promotes the transfer of know-how between research, industry and membrane manufacturers for resource-efficient applications. The national task strengthens the Austrian research landscape through networking activities.
IEA IETS Task 18: Digitalization, Artificial Intelligence and Related Technologies for Energy Efficiency and GHG Emissions Reduction in Industry (Working period 2023 - 2024)
The work in Task 18 enables the exchange of experience and knowledge between industry and research institutions from different countries. Through this cooperation best practices are identified and disseminated to promote the implementation of energy-efficient technologies in industry. In the medium and long-term, this contributes to reduce energy consumption and greenhouse gas emissions of industry.